
- •Содержание
- •Часть 1. Материалы и конструкции деталей аппаратов, трубопроводов и трубопроводной арматуры
- •1.1. Материалы
- •1.2. Инновационные технологии изготовления конструкционных материалов
- •Способ сухой намотки
- •Сетчатые оболочки из композиционных материалов
- •Композитные сосуды и баллоны высокого давления
- •1.3. Защитные покрытия
- •1.4. Тепловая изоляция
- •1.5. Трубопроводы
- •1.5.1. Узлы и детали трубопроводов
- •1.5.2. Компенсаторы
- •1.5.3. Опоры трубопроводов
- •1.5.4. Соединения трубопроводов
- •1.6. Трубопроводная арматура
- •1.6.1. Задвижки
- •1.6.2. Вентили
- •1.6.3. Краны
- •1.6.4. Заслонки
- •1.6.5. Клапаны
- •1.6.5.1. Обратные клапаны
- •1.6.5.2. Предохранительные клапаны
- •1.7. Устройства для присоединения трубопроводов
- •1.7.1. Штуцера и бобышки
- •1.8. Смотровые окна
- •1.9. Люки
- •1.10. Опоры и устройства для строповки аппаратов
- •1.10.1. Опоры и лапы аппаратов
- •1.10.2. Устройства для строповки аппаратов
- •Часть 2. Реакционное оборудование
- •2.1. Аппараты и мешалки
- •2.1.1. Привод мешалки
- •2.1.2. Мешалки
- •2.2. Уплотнения вращающихся валов
- •2.2.1. Сальниковые уплотнения
- •2.2.2. Торцевые уплотнения
- •Часть 3. Оборудование реакционных процессов
- •3.1. Реакционные печи
- •3.1.1. Трубчатые печи
- •3.1.2. Печи для получения сажи
- •3.1.3. Печи окислительного пиролиза
- •3.2. Реакторы для проведения реакций в газовой фазе над твердым катализатором
- •3.2.1. Реакторы с неподвижным слоем катализатора
- •3.2.1.1. Реакторы с теплообменом через стенку (изотермические)
- •3.2.1.2.1 Реакторы с предварительным перегревом (или недогревом) поступающей в реактор смеси
- •3.2.1.2.2 Реакторы с предварительным перегревом катализатора
- •3.2.1.2.3 Реакторы с вводом дополнительных количеств нагретого или охлажденного сырья
- •3.2.2. Реакторы с движущимся слоем катализатора
- •3.2.2.1. Реакторы с движущимся гранулированным слоем катализатора
- •3.2.2.2. Реакторы с псевдоожиженным слоем катализатора
- •3.3. Реакторы для проведения реакций в газовой фазе над жидким катализатором
- •3.3.1. Реакционные аппараты колонного типа с насадкой или тарелками
- •Внутренние устройства массообменных аппаратов (колонное оборудование)
- •3.3.2. Реакторы барботажного типа
- •3.3.3. Реакторы пенного типа
- •3.3.4 Реакторы пленочного типа
- •3.3.5. Реакторы типа эрлифт
- •3.4. Реакторы для проведения реакций в жидкой фазе и эмульсиях
- •3.4.1. Реакторы с мешалками
- •3.4.2. Реакторы проточного типа
- •Часть 4. Реакционное оборудование процессов полимеризации
- •4.1. Реакторы для полимеризации в эмульсии
- •4.2. Реакторы для полимеризации в растворе
- •4.2.1. Реакторы идеального смешения
- •4.2.2. Реакторы полного вытеснения
- •4.3. Реакторы для полимеризации в массе
- •Часть 5. Растворы каучуков обработка растворов каучуков
- •5.1 Отмывка остатков катализатора
- •Часть 6. Оборудование процессов дегазации
- •6.1. Оборудование процессов дегазации латексов
- •6.2. Аппараты для водной дегазации каучуков
- •6.2.1. Емкостные дегазаторы
- •6.2.2. Многоступенчатые дегазаторы
- •6.3. Крошкообразователи
- •6.4. Аппараты безводной дегазации каучуков (Дегазация в смесительных машинах)
- •6.5. Дегазация в пленочных аппаратах
- •6.6. Дегазация в роторных аппаратах
- •6.6.1. Вертикальные роторные аппараты
- •6.6.2. Горизонтальные роторные аппараты
- •6.7. Дегазация в струйных аппаратах
- •6.8. Дегазация в валковых машинах
- •6.9. Дегазация в червячных машинах
- •Часть 7. Оборудование для введения в каучук сажи, масла и других наполнителей
- •7.1. Введение масла
- •7.2. Введение сажи
- •Часть 8. Оборудование агломерации и концентрирования латексов
- •8.1. Оборудование агломерации латексов
- •8.2. Оборудование для концентрирования латексов
- •Часть 9. Способы и оборудование коагуляции и выделения каучуков
- •9.1. Методы коагуляции латексов и выделения каучуков
- •Часть 10. Оборудование процессов обезвоживания и сушки каучуков
- •10.1. Оборудование процессов обезвоживания
- •10.2. Червячные машины
- •10.3. Сушилки
- •10.3.1. Конвейерные сушилки
- •2, 4, 7, 9 – Вентиляторы; 3 – калорифер; 6 – виброконвейер;
- •10.4. Машины механотермического обезвоживания
- •10.5. Сушка электромагнитными волнами
- •Часть 11. Машины для обработки каучука
- •11.1. Машины для формирования и упаковки каучука в кипы
- •11.2 Машины для формирования и упаковки каучука в брикеты
- •Список использованной литературы
2, 4, 7, 9 – Вентиляторы; 3 – калорифер; 6 – виброконвейер;
8 – привод вироконвейера; 10 – червячная сушилка
Рис. 10.15. Вертикальный виброподъемник: 1 – неподвижное перекрытие; 2 – амортизирующие пружины; 3 – несущая труба; 4 – спиральный лоток; 5 – вибратор
Интересны способы сушки эластомеров центрифугированием (рис. 10.16.) и распылением, обеспечивающий одновременный ввод наполнителей потоком теплоносителя (рис.10.17.).
Рис. 10.16. Схема сушки каучука центрифугированием:
1 – экструдер; 2 – поддон для водной крошки; 3 – линия рецикла воды; 4 – промежуточный бак; 5 – переливная линия; 6 – вход водной крошки; 7 – бак для рециркулирующей воды; 8 – насос;
9 – центрифуга; 10 – выход влажного воздуха; 11 – каучук на брикетирование и упаковку
Рис. 10.17. Схема получения резиновых гранул с сушкой латекса распылением: 1 – распылительная зона; 2 – распылительное устройство; 3 – зона сушки; 4, 6 – сепараторы;
5 – пневмотранспортер; 7 – гранулятор.
Потоки: I – латексы; II – горячий воздух; III – холодный воздух;
IV – горячий воздух и ингредиенты; V – парогазовая смесь;
VI – гранулы
10.4. Машины механотермического обезвоживания
Наиболее перспективна сушка в червячных агрегатах. Выделение влаги каучука в таких машинах осуществляется как механическим отжимом, так и удалением перегретых паров при сбросе давления (рис.10.18.).
Рис. 10.18. Червячная машина для термической сушки каучука (а) и ее цилиндр (б) 1 – корпус; 2 – загрузочный бункер;
3 – редуктор; 4 – червяк; 5 – перемешивающие болты;
6 – рубашка
Тепло передается каучуку за счет превращения механической энергии в тепловую, а также через корпус машины от теплоносителя, т.е. машина является политропной. Крошка каучука, предварительно отжатая на отжимной машине до влажности 15%, поступает в загрузочный бункер, захватывается витками червяка и транспортируется в рабочую зону машины. Каучук при движении разогревается от диссипации энергии привода в теплоту, а также за счет передачи теплоты от паровой рубашки. Вода, содержащаяся в каучуке, находится в перегретом состоянии на протяжении всего периода движения через рабочую часть машины. При этом давление, создаваемое витками червячного вала, выше давления паров перегретой воды. Наличие воды в каучуке интенсифицирует теплопередачу от рубашки к каучуку. Пар подводится также к фильерной головке. Температура каучука на выходе может достигать 200 °С.
При выходе каучука из фильерной головки происходит сброс давления, вода мгновенно превращается в пар и каучук становится почти сухим. Быстрое превращение воды в пар делает жгуты каучука пористыми. Для увеличения производительности червячной машины используется вибрационное воздействие на полимер.
Для более быстрого и равномерного прогрева каучука используется тепло, выделившееся за счет трения от перемешивающих болтов (рис. 10.19.), которые вводятся в разрезы червяка. При этом возможно регулирование степени сжатия каучука за счет перемещения болтов.
Рис. 10.19. Поперечный разрез корпуса червячной машины:
1 – корпус; 2 – рубашка; 3 – гильза; 4 – планка; 5 – перемешивающий болт
В ряде случаев бутадиенстирольные каучуки получают в виде ленты: для этого на специальной лентоотливочной машине (рис.10.20) каучук отделяется от серума, промывается умягченной водой и отжимается от влаги. После лентоотливочной машины каучук направляется в ленточную сушилку (см. рис.9.5.). Однако этот способ не перспективен из-за подгорания ленты, деструкции, небольших коэффициентов тепло – и массопередач.
Рис. 10.20. Лентоотливочная машина: 1 – приемный ящик; 2 – вал ограничителя; 3, 12 – валы для сетки; 4, 9 – ролики; 5 – боковые ограничители; 6 – сетка; 7 – натяжное приспособление;
8 – промывные лотки; 9 – ролики; 10 – отжимной барабан;
11 – вакуумные коробки; 13 – отжимные валки;
14 – промежуточный транспортер