
- •Содержание
- •Часть 1. Материалы и конструкции деталей аппаратов, трубопроводов и трубопроводной арматуры
- •1.1. Материалы
- •1.2. Инновационные технологии изготовления конструкционных материалов
- •Способ сухой намотки
- •Сетчатые оболочки из композиционных материалов
- •Композитные сосуды и баллоны высокого давления
- •1.3. Защитные покрытия
- •1.4. Тепловая изоляция
- •1.5. Трубопроводы
- •1.5.1. Узлы и детали трубопроводов
- •1.5.2. Компенсаторы
- •1.5.3. Опоры трубопроводов
- •1.5.4. Соединения трубопроводов
- •1.6. Трубопроводная арматура
- •1.6.1. Задвижки
- •1.6.2. Вентили
- •1.6.3. Краны
- •1.6.4. Заслонки
- •1.6.5. Клапаны
- •1.6.5.1. Обратные клапаны
- •1.6.5.2. Предохранительные клапаны
- •1.7. Устройства для присоединения трубопроводов
- •1.7.1. Штуцера и бобышки
- •1.8. Смотровые окна
- •1.9. Люки
- •1.10. Опоры и устройства для строповки аппаратов
- •1.10.1. Опоры и лапы аппаратов
- •1.10.2. Устройства для строповки аппаратов
- •Часть 2. Реакционное оборудование
- •2.1. Аппараты и мешалки
- •2.1.1. Привод мешалки
- •2.1.2. Мешалки
- •2.2. Уплотнения вращающихся валов
- •2.2.1. Сальниковые уплотнения
- •2.2.2. Торцевые уплотнения
- •Часть 3. Оборудование реакционных процессов
- •3.1. Реакционные печи
- •3.1.1. Трубчатые печи
- •3.1.2. Печи для получения сажи
- •3.1.3. Печи окислительного пиролиза
- •3.2. Реакторы для проведения реакций в газовой фазе над твердым катализатором
- •3.2.1. Реакторы с неподвижным слоем катализатора
- •3.2.1.1. Реакторы с теплообменом через стенку (изотермические)
- •3.2.1.2.1 Реакторы с предварительным перегревом (или недогревом) поступающей в реактор смеси
- •3.2.1.2.2 Реакторы с предварительным перегревом катализатора
- •3.2.1.2.3 Реакторы с вводом дополнительных количеств нагретого или охлажденного сырья
- •3.2.2. Реакторы с движущимся слоем катализатора
- •3.2.2.1. Реакторы с движущимся гранулированным слоем катализатора
- •3.2.2.2. Реакторы с псевдоожиженным слоем катализатора
- •3.3. Реакторы для проведения реакций в газовой фазе над жидким катализатором
- •3.3.1. Реакционные аппараты колонного типа с насадкой или тарелками
- •Внутренние устройства массообменных аппаратов (колонное оборудование)
- •3.3.2. Реакторы барботажного типа
- •3.3.3. Реакторы пенного типа
- •3.3.4 Реакторы пленочного типа
- •3.3.5. Реакторы типа эрлифт
- •3.4. Реакторы для проведения реакций в жидкой фазе и эмульсиях
- •3.4.1. Реакторы с мешалками
- •3.4.2. Реакторы проточного типа
- •Часть 4. Реакционное оборудование процессов полимеризации
- •4.1. Реакторы для полимеризации в эмульсии
- •4.2. Реакторы для полимеризации в растворе
- •4.2.1. Реакторы идеального смешения
- •4.2.2. Реакторы полного вытеснения
- •4.3. Реакторы для полимеризации в массе
- •Часть 5. Растворы каучуков обработка растворов каучуков
- •5.1 Отмывка остатков катализатора
- •Часть 6. Оборудование процессов дегазации
- •6.1. Оборудование процессов дегазации латексов
- •6.2. Аппараты для водной дегазации каучуков
- •6.2.1. Емкостные дегазаторы
- •6.2.2. Многоступенчатые дегазаторы
- •6.3. Крошкообразователи
- •6.4. Аппараты безводной дегазации каучуков (Дегазация в смесительных машинах)
- •6.5. Дегазация в пленочных аппаратах
- •6.6. Дегазация в роторных аппаратах
- •6.6.1. Вертикальные роторные аппараты
- •6.6.2. Горизонтальные роторные аппараты
- •6.7. Дегазация в струйных аппаратах
- •6.8. Дегазация в валковых машинах
- •6.9. Дегазация в червячных машинах
- •Часть 7. Оборудование для введения в каучук сажи, масла и других наполнителей
- •7.1. Введение масла
- •7.2. Введение сажи
- •Часть 8. Оборудование агломерации и концентрирования латексов
- •8.1. Оборудование агломерации латексов
- •8.2. Оборудование для концентрирования латексов
- •Часть 9. Способы и оборудование коагуляции и выделения каучуков
- •9.1. Методы коагуляции латексов и выделения каучуков
- •Часть 10. Оборудование процессов обезвоживания и сушки каучуков
- •10.1. Оборудование процессов обезвоживания
- •10.2. Червячные машины
- •10.3. Сушилки
- •10.3.1. Конвейерные сушилки
- •2, 4, 7, 9 – Вентиляторы; 3 – калорифер; 6 – виброконвейер;
- •10.4. Машины механотермического обезвоживания
- •10.5. Сушка электромагнитными волнами
- •Часть 11. Машины для обработки каучука
- •11.1. Машины для формирования и упаковки каучука в кипы
- •11.2 Машины для формирования и упаковки каучука в брикеты
- •Список использованной литературы
Часть 5. Растворы каучуков обработка растворов каучуков
При переработке растворов каучуков возникает необходимость отмывки остатков катализатора, разрушения образующихся эмульсий воды в каучуке и фильтрования растворов.
5.1 Отмывка остатков катализатора
В промышленности остатки катализатора удаляются экстракцией воды.
Экстракция вязких жидкостей в аппаратах с мешалками неэффективна. Поэтому для отмывки остатков катализатора применяют роторно - пульсационные аппараты, называемые безобъемными смесителями, размеры которых мало отличаются от размеров подводящего и отводящего трубопроводов, а мощность, подводимая к единице объема жидкости, значительно превосходит удельную мощность в емкостном аппарате с мешалкой. Интенсификация смешения в безобъемном смесителе достигается благодаря созданию во всем объеме смесителя больших сдвиговых деформаций с помощью высокооборотных перемешивающих устройств, имеющих малые зазоры между подвижными и неподвижными элементами.
В промышленности применяют в основном две конструкции роторно – пульсационных аппаратов с вертикальными и горизонтальными валами.
В роторном аппарате с вертикальным валом (рис.5.1.) жидкая среда с помощью зубцов и щелей статора и ротора (рис.5.2.) разбивается на большое число многократно перемешивающихся потоков. В результате среда оказывается подверженной действию меняющихся импульсов давления, интенсифицирующих смешение.
Рис. 5.1. Смеситель роторного типа: 1 – электродвигатель;
2 – монтажная скоба; 3 – муфта; 4 – рама; 5 – стакан;
6 – роторная головка
Рис. 5.2. Роторная головка: 1 – статор; 2 – ротор
Роторный аппарат с горизонтальным валом (рис.5.3.) отличается компактностью и наличием лопаток перед внутренним статорным цилиндром для создания напора на роторе.
Рис. 5.3. Роторно-пульсационный аппарат: 1 – вал; 2 – станина;
3 – ротор; 4 – статор; 5 – двойное торцевое уплотнение
После дезактивации катализатора метанолом, осуществляемой в роторно-пульсационных аппаратах, раствор полимера попадает в отмывную колонну, состоящую из смесительных и отстойных зон (рис.5.4., 5.5.).
Рис. 5.4. Отмывная колонна: 1 – опора вала; 2 – турбинная мешалка; 3 – кольцо; 4 – коническая перегородка
Рис. 5.5. Рабочая секция: 1 – кольцо; 2 – коническая перегородка; 3 – ребра; 4 – ребра; 5 – опора
Колонна работает при заполнении ее раствором полимера. В смесительной колонне происходит диспергирование и перемешивание воды, в отстойной зоне, снабженной ребрами, осуществляется отстой.
Часть 6. Оборудование процессов дегазации
6.1. Оборудование процессов дегазации латексов
Степень полимеризации для наиболее распространенных марок эмульсионных каучуков составляет 60-70%. Поэтому необходима отгонка незаполимеризовавшихся мономеров с целью предотвращения дальнейшей полимеризации, возвращения на полимеризацию непрореагировавшего мономера, уменьшения образования газовых пузырей в резиновых изделиях и улучшения условий труда на последующих стадиях переработки каучука.
Особенностью дегазации латексов является склонность последних к отложению коагулюма, а также к пенообразованию из-за содержащегося в их составе эмульгатора. Для снижения температуры кипения отгоняемых мономеров процесс проводят под вакуумом (это же обусловливает уменьшение образования коагулюма). Подвод тепла к латексу осуществляется с помощью острого пара, который, во-первых, является теплоносителем, и, во-вторых, уменьшает парциальное давление мономера в смеси мономер-пар, что ведет к снижению температуры отгонки мономера.
Существуют две схемы дегазации: прямоточная и противоточная.
В колонне прямоточной дегазации (рис.6.1.) латекс и пар подаются в верхнюю часть колонны и движется прямотоком сверху вниз по пакетной насадке (рис.6.2.), которая состоит из чередующихся колец и дисков (другие насадки из-за трудности их чистки от коагулюма неприемлемы).
Колонна имеет увеличенный куб, что снижает потери тепла. Для уменьшения пенообразования при стекании латекса в кубе имеется желобчатый лоток 6.
Рис. 6.1. Отгонная колонная для дегазации латексов:
1 – колонна; 2 – куб; 3 – кольцо; 4 – диск; 5 – шибер; 6 – лоток
Рис. 6.2. Пакет насадки: 1 – диск; 2 – кольцо; 3 – штанга;
4 – опорная планка
Для дегазации стирольных латексов применяются две-три таких последовательно соединенных колонны или совмещенный двух- или трехколонный дегазационный агрегат (рис.6.3.).
Рис. 6.3. Двухколонный агрегат для дегазации латексов:
1 – колонна первой ступени дегазации; 2 – колонна второй ступени дегазации; 3 – куб; 4 – насос; 5 – перегородка;
6 – паровая труба
При использовании двух колонн появляется возможность повысить эффективность агрегата путем организации противотока латекса и пара. Такие дегазаторы обеспечивают одну ступень контакта. Пакетная насадка не обеспечивает одинакового времени пребывания в аппарате для всех частиц латекса. Часть латекса проскакивает по стенке аппарата без достаточного контакта с паром. В то же время отложение коагулюма на пакетной насадке требует отключения аппарата для чистки через каждые 20-25 суток. Исключить перечисленные выше недостатки можно с помощью противоточной системы дегазации (рис.6.4.).
|
Рис. 6.4. Противоточная колонна для дегазации латекса: 1 – глухая тарелка; 2 – царга; 3 – сетчатая тарелка; 4 – корпус; 5 – лоток; 6 – опора |
Ввод латекса осуществляется через штуцер, который расположен по правую сторону от вертикальной конусообразной перегородки, разделяющее газовое пространство на две части. Газы, выходящие из-под глухой тарелки, проходят навстречу латексу, а дивинил движется по свободному пространству слева от конического отбойника, после чего смешивается с парами стирола и выходит через верхний штуцер на конденсацию. На пути движения газа после наклонного отбойника расположена горизонтальная сегментальная пластина для окончательного отбоя капель латекса.
Поэтому в настоящее время проводится разработка легкосъемной и удобной для чистки насадки. Технико-экономические исследования этой системы показывают существенные преимущества ее по сравнению с прямоточной: малые удельные расходы пара и электроэнергии, высокая степень отгонки мономеров, значительно меньшее гидравлическое сопротивление системы и больший срок рабочего пробега оборудования.
Для дегазации латексов применяются также смесительные форсунки, использование которых дает возможность увеличения степени отгонки мономера наряду с уменьшением расхода пара (рис.6.5.).
Рис. 6.5. Схема дегазатора со смесительной форсункой:
а – общий вид дегазатора; б – смесительная форсунка; 1 – корпус форсунки; 2 – водяная рубашка; 3 – паровая рубашка; 4 – шток;
5 – расширитель
Применима также схема дегазации латекса путем распыления его в потоке пара (рис.6.5.). В распылительном устройстве осуществляется диспергирование латекса в паре. Полученная дисперсия проходит через пластинчатый теплообменник и попадает в сепаратор.
Для дегазации латекса можно применять также пленочные аппараты (см. рис.6.39.).