Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОПиОПП Учебное пособие Зенитова.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
33.93 Mб
Скачать

3.1.2. Печи для получения сажи

Сырьём для получения сажи, применяемой в резиновой (80%) и других областях промышленности, служат природные газы, продукты переработки нефти, каменного угля, ацетилена и т.д (рис. 3.16.).

Рис. 3.17. Печь для получения сажи: 1 – форсунка для распыления сырья; 2- форсунка для сжигания газа;

3 – футеровка; 4 – металлический корпус; 5 – форсунка для впрыска воды; 6 – реакционная труба; 7 – камера реакции

В печи для получения сажи из жидких углеводородов нефти температура, необходимая для проведения процесса, создается сжиганием природного газа в камере горения (сюда же впрыскивают подогретое сырьё). Распыленное сырьё получает тепло от горящего газа, испаряется и воспламеняется, но не сгорает полностью. Пройдя участок диффузионного горения, оно разлагается в диффузионной камере. Процесс ведется при температуре 1300-1500°С и давление 30 кПа в течение 0,05-5 с. Закалка газов осуществляется впрыскиванием воды, в результате чего температура снижается до 700°С и процесс прекращается.

3.1.3. Печи окислительного пиролиза

Окислительный пиролиз проводится в присутствии кислорода, который служит для достижения необходимой температуры (1400-1600°С) за счёт частичного сжигания углеводородов (рис. 3.17.).

Аппараты окислительного пиролиза имеют зону смешения, в которой происходит смешение углеводородов с кислородом, реакционную зону и зону закалки реакционных газов. Зона смешения отделена от зоны реакции огнепреградительной решёткой. В конце реакционной зоны продукты встречаются с потоками воды, разбрызгиваемой форсунками, вследствие чего температура газов резко снижается и дальнейший процесс прекращается.

Давление в аппарате 30-40 кПа. Температура реагентов на входе в аппарат 600 °С, в зоне реакции 1500°С. После закалки газы имеют температуру 80 °С.

Рис. 3.17. Реактор окислительного пиролиза: 1- зона смешения;

2- огнепреградительная решетка; 3- форсунка

3.2. Реакторы для проведения реакций в газовой фазе над твердым катализатором

Реакторы такого типа делятся на реакторы с неподвижным и движущимся слоем катализатора и по способу осуществления теплообмена (изотермические и адиабатические).

3.2.1. Реакторы с неподвижным слоем катализатора

3.2.1.1. Реакторы с теплообменом через стенку (изотермические)

Наиболее простым аппаратом этого типа является реторная печь Грум-Гржимайло, использованная акад. С.В.Лебедевым в 30 – ых годах 20 века для получения дивинила из спирта (рис. 3.18.).

Рис. 3.18. Ретортная печь для синтеза дивинила: 1 – реторта;

2 – сборный коллектор на выходе продуктов; 3 – муфель;

4 – распределительный коллектор на входе реагентов;

5 – форсунка

Ретортная печь представляет собой муфель с двойными стенками, объединенными общим обогревателем. Узкий кольцевой промежуток между стенками является топкой печи. Обогрев происходит за счет топочных газов от сжигания мазута или газа в тангенциально расположенных форсунках. Контактные газы собираются в общий коллектор. Недостатком таких реакторов громоздкость и техническое несовершенство.

На рис.3.19. изображена реторта, представляющая собой сосуд с большим соотношением между высотой и площадью поперечного сечения, заполненный катализатором. Форма поперечного сечения реторты может быть различной: круглая, прямоугольная, овальная. Наименее выгодной является круглая форма, из-за неравномерного распределения температуры по сечению реторты.

Рис. 3.19. Реторта: 1 – штуцер для гильзы термопары; 2 – тяги

К реакторам рассматриваемого типа относятся также трубчатые аппараты. Конструктивно они могут быть с охлаждающей рубашкой около каждой трубки, с общей охлаждающей рубашкой (аппарат кожухотрубного типа с размещением катализатора в трубках или межтрубном пространстве), с двойными трубками, когда слой катализатора имеет кольцевое сечение. Примером трубчатого аппарата может служить полимеризатор пропан-пропиленовой фракции (рис. 3.20.).

Рис. 3.20. Секция многотрубного аппарата типа “труба в трубе”:

1 – корпус; 2 – рубашка

Он представляет собой реактор типа “труба в трубе и состоит из 12 секций, работающих параллельно. При установке рубашек на каждую трубу можно использовать рубашки с меньшей толщиной стенки. Достоинством таких аппаратов является возможность применения хладоагента высокого давления; недостатки выражаются в малой производительности, большой занимаемой площади, неудобстве выгрузки катализатора.

Так же к трубчатому аппарату можно отнести аппарат для дегидрирования циклогексанола (рис.3.21.). Аппарат имеет концентрические перегородки, обеспечивающий равномерный нагрев всех трубок, и сальник, выполняющий роль компенсатора температурных удлинений.

Рис. 3.21. Трубчатый контактный аппарат для дегидрирования циклогексанола: 1 – контактные трубки; 2 – корпус;

3 – футеровка; 4 – перегородка; 5 – сальник

Основными же типами реакторов с теплообменом через стенку являются трубчатые реакторы, которые, в свою очередь, подразделяются на многотрубные и кожухотрубные.

В многотрубных реакторах (рис. 3.22.), представляющих собой обычные трубчатые теплообменники, катализатор помещен в трубках, а теплоноситель движется в межтрубном пространстве. Многотрубные реакторы применимы как для эндотермических процессов (дегидрирование бутана, бутилена, этилбензола; дегидратация и дегидрирование спиртов), так и для экзотермических (окисление, гидрогалогенирование).

Рис. 3.22. Многотрубный реактор с металлическим кожухом для дегидратации спиртов: 1 – кожух; 2 – трубные решетки;

3 – верхняя крышка; 4 – нижняя крышка; 5 – трубка

Высокоэффективным, с экономической точки зрения, является применение внутреннего теплообмена. Под этим теплообменом подразумевается использование в качестве хладоагента сырья, поступающего на реакцию. Схемы многотрубных реакторов с внутренним теплообменом приведены на рис. 3.23. а, б.

Рис. 3.23. Многотрубные реакторы с внутренним теплообменом при противотоке (а) и прямотоке или противотоке (б):

1 – нижняя крышка; 2 – верхняя крышка; 3 – верхняя трубная решетка; 4 – трубки; 5 – кожух; 6 – нижняя трубная решетка

В кожухотрубных реакторах катализатор расположен в межтрубном пространстве, а теплоноситель пропускается по трубкам. В обоих случаях гидравлический радиус сечения реакционной зоны очень невелик, что обуславливает хорошую теплопередачу. Однако не удается достичь равномерного распределения температур в реакционной зоне, так как отдельные трубки оказываются в различных условиях.

Схема кожухотрубного реактора для проведения экзотермических и эндотермических процессов приведена на рис. 3.24. а, б соответственно.

Рис. 3.24. Кожухотрубные реакторы для проведения экзотермических (а) и эндотермических (б) процессов:

1 – нижняя крышка; 2 – верхняя крышка; 3 – нижняя трубная решетка; 4 – трубки; 5 – кожух; 6 – верхняя трубная решетка;

7 – глухие трубки

Интересным вариантом кожухотрубного реактора является аппарат для проведения так называемых «адиабатических» процессов, в которых циклы реакции и регенерации быстро чередуются (рис. 3.25.).

Кожухотрубные реакторы имеют существенные преимущества перед многотрубными в отношении обеспечения более строгого теплового режима, так как в них достигаются более благоприятные условия теплообмена и большие теплопередающие поверхности. Однако они имеют и недостаток, заключающийся в деформации трубок при перегрузке катализатора. Кроме того, трубные реакторы сложны в изготовлении.

Рис. 3.25. Кожухотрубный реактор для проведения чередующихся экзотермических и эндотермических процессов:

1 – нижняя трубная решетка; 2 – штуцер для выгрузки катализатора; 3 – собирательные трубки; 4 – кожух; 5 – верхняя трубная решетка; 6 – крышка; 7 – труба для загрузки катализатора; 8 – трубки для теплоносителя;

9 – распределительные трубки; 10 – катализаторная трубная решетка; 11 – главная трубная решетка; 12 – днище

3.2.1.2. Реакторы с непосредственным контактом газа с катализатором

Реакторы такого типа представляют собой полые цилиндрические или конические аппараты, в которых слой катализатора расположен на решетке. В отличие от реакторов с теплообменом через стенку они более просты по конструкции. Аппараты, работающие при нормальном давлении, могут изготавливаться из кирпича, - под избыточным давлением выполняются из стали. Условия теплообмена во всех аппаратах такого типа благоприятны из-за непосредственного контакта газа с катализатором, на поверхности которого протекает реакция, сопровождающая выделением или поглощением тепла. В эндотермических процессах теплоносителем служит либо сам газ, либо катализатор, а в экзотермических процессах хладоагентом является только реагирующая газовая смесь.

В реакторах с непосредственным контактом наблюдается неравномерное распределения температур по высоте реакционной зоны, поэтому применение их ограниченно. По способу подвода тепла они делятся на:

  1. реакторы с предварительным перегревом (или недогревом) поступающей в реактор смеси;

  2. реакторы с предварительным перегревом катализатора;

  3. реакторы с вводом дополнительных количеств нагретого или охлажденного сырья.