
- •Оглавление
- •1.Предмет и задачи тд. Модели тд.
- •2.Модели тд. Объяснение агрегатных состояний вещества.
- •3.Методы тд.
- •4.Исходные понятия тд.
- •5.Постулаты термодинамики.
- •6.Начала тд.
- •7.Термическое и калорическое уравнения состояния. Термическое уравнение состояние идеального газа.
- •8.Внутренняя энергия идеального газа. Калорическое уравнение состояние идеального газа.
- •9.I начало термодинамики.
- •I начало тд обобщает закон сохранения энергии для тд процессов: количество теплоты, сообщаемое системе, идет на изменение ее внутренней энергии и совершение системой работы.
- •10.Теплоемкость.
- •11.Теплоемкость идеального газа.
- •12. 13.Теорема о равнораспределении энергии по степеням свободы. Число степеней свободы молекул. Число степеней свободы молекул. Выражение для внутренней энергии идеального газа.
- •14.Изохорический процесс: уравнение, график в pv, pt, vt координатах.
- •15.I начало термодинамики в изохорическом процессе.
- •16.Изобарический процесс: уравнение, график в pv, pt, vt координатах.
- •17. I начало термодинамики в изобарическом процессе.
- •18.Изотермический процесс: уравнение, график в pv, pt, vt координатах.
- •19.I начало термодинамики в изотермическом процессе.
- •20.Адиабатический процесс. Уравнение адиабаты. График адиабаты.
- •21.I начало термодинамики в адиабатическом процессе.
- •22.Политропный процесс. Уравнение политропы, показатель политропы, график политропы.
- •23.I начало термодинамики в политропном процессе.
- •24.Изопроцессы как предельные случаи политропного процесса.
- •25.Обратимые и циклические процессы.
- •26. Тепловые машины. Эффективность работы тепловой машины.
- •27.Холодильные машины. Эффективность работы холодильной машины.
- •28.29.Цикл Карно. К.П.Д. Цикла Карно. Идеальная тепловая машина Карно.
- •30. I Теорема Карно.
- •31.II теорема Карно. Реальные тепловые машины.
- •32.II начало термодинамики в формулировках Кельвина и Клаузиуса.
- •33.Тождество Клаузиуса, неравенство Клаузиуса.
- •34. Понятие энтропии. Свойства энтропии. Размерность.
- •35.Энтропия в обратимых и необратимых процессах.
- •36. Энтропия идеального газа.
- •37.III начало тд. Следствия III начала тд.
- •38.Энтальпия.
- •39.Свободная энергия идеального газа.
- •40.Метод тд потенциалов.
- •С 41 по 46 не разделила!смотреть тут(то что красным)!!!:
- •48.Условия равновесия и устойчивости системы в термостате при постоянном объеме.
- •49.Условия равновесия и устойчивости системы в термостате при постоянном внешнем давлении.
- •50.Условия равновесия и устойчивости системы при постоянных энтропии и давлении.
- •51. Условия равновесия и устойчивости системы при постоянных энтропии и объеме.
- •52.Условия равновесия и устойчивости системы с переменным числом частиц в термостате, при постоянных химическом потенциале и объеме.
- •53. Условия равновесия и устойчивости двухфазной однокомпонентной изолированной системы.
- •54.Принцип Ле Шателье-Брауна. Примеры проявления принципа Ле Шателье-Брауна.
- •55.Начала статистической физики: исходные понятия теории вероятности.
- •56.Начала статистической физики: макро- и микросостояния, статистический ансамбль, микроканонический ансамбль, постулат равновероятности.
- •57.Начала статистической физики: эргодическая гипотеза, статистический вес, статистическое толкование энтропии.
- •58.Начала статистической физики: флуктуации.
- •65.Характерные скорости распределения Максвелла: средняя квадратичная скорость.
- •66.Характерные скорости распределения Максвелла: наиболее вероятная скорость.
- •67. Подсчет числа молекул скорости, которых лежат в заданном диапазоне.
- •68.Экспериментальная проверка закона распределения.
- •69.Вывод основного уравнения молекулярно-кинетической теории идеального газа.
- •70.Вывод уравнения состояния. Закон Дальтона. Закон Авогадро.
- •71.72.( Не разделены!)Распределение Больцмана. (72)Барометрическая формула.
- •73.Экспериментальное определение постоянной Авогадро.
- •74.Теорема о равнораспределении энергии по степеням свободы.
- •75.Расхождение теории теплоемкости идеального газа с экспериментом.
- •76.Статистика Ферми-Дирака (подсчет числа микросостояний, функция распределения).
- •77.Статистика Бозе-Эйнштейна (подсчет числа микросостояний, функция распределения).
- •78.Длина свободного пробега.
- •79.Частота столкновений в единицу времени, понятие физического вакуума.
- •80.Явления переноса: теплопроводность.
- •81.Явления переноса: диффузия.
- •82.Явления переноса: вязкое трение.
- •83.Молекулярная теория явлений переноса: вывод уравнения переноса параметра .
- •84.Молекулярная теория явлений переноса: вывод уравнения коэффициента диффузии.
- •85.Молекулярная теория явлений переноса: вывод уравнения коэффициента теплопроводности.
- •86.Молекулярная теория явлений переноса: вывод уравнения коэффициента вязкости.
- •87.Силы и потенциальная энергия межмолекулярного взаимодействия.
- •88.Вывод уравнения Ван-дер-Ваальса.
- •89.Изотермы Ван-дер-Ваальса.
- •Часть 7—6 — отвечает газообразному состоянию;
- •Часть 2—1 — жидкому;
- •Часть 6—2, — горизонтальный участок, соответствующий равновесию жидкой и газообразной фаз вещества.
- •90.Фазовые переходы. Уравнения Клайперона-Клаузиуса.
- •91.Поверхностное натяжение в жидкостях.
- •92.Смачивание
- •93.Капиллярные явления. Формула Лапласса.
- •94.Строение твердых тел. Классификация элементарных ячеек.
- •95.Дефекты кристаллических решеток.
- •96.Температура. Температурные шкалы. Способы измерения.
4.Исходные понятия тд.
Термодинамика – учение о связи и взаимопревращении различных видов энергии, теплоты и работы.
ТД изучает макросистемы – термодинамические системы – пространственные размеры которых и время существования достаточны для проведения нормальных процессов измерения. Изучает свойства макроскопических систем, которые находится в состоянии термодинамического равновесия и закономерности при их приближении к равновесию.
Макросистемы состоят из большого числа материальных частиц (например молекул, атомов, электронов и т.д.) или полей, например электромагнитного поля.
Состояние
макросистемы характеризуется
макроскопическими параметрами. Такими
как: плотность
,
объем
,
упругость, давление
,
температура
,
внутренняя энергия
,
концентрация, поляризация, намагничивание
и другими переменными величинами,
численные значения которых можно
измерить.
Параметры подразделяются на внешние и внутренние, это зависит в каждом конкретном случае от того где проведена граница между системой и средой.
Внешние параметры – определяются положением не входящих в систему тел (например, ими могут быть , , …). Внешние параметры являются функциями координат внешних тел.
Внутренние параметры – определяются движением частиц системы ( , , ими могут быть , ), а также значением внешних параметров. Внутренние параметры системы разделяются на интенсивные параметры и экстенсивные параметры. Интенсивными называются параметры, не зависящие от массы или числа частиц в системе (давление, температура). Экстенсивными или аддитивными называются параметры пропорциональные массе или числу частиц в системе (энергия, энтропия).
В зависимости от условий, в которых находится система, одна и та же величина может быть как внешним, так и внутренним параметром.
Например, при фиксированном положении стенок сосуда объем является внешним параметром, а давление - внутренним параметром, так как зависит от координат и импульсов частиц системы. В условиях же когда система находится в сосуде с подвижным поршнем под постоянным давлением, давление будет внешним параметром, а объем - внутренним параметром, так как зависит от положения и движения частиц.
Совокупность независимых макроскопических параметров определяет состояние системы.
Состояние системы называется стационарным, если параметры системы не изменяются со временем. Состояние системы называется равновесным, если, кроме того, нет стационарных потоков извне (потоков вещества, потоков энергии).
Если состояние системы стационарное и равновесное, то говорят, что система находится в состоянии термодинамического равновесия.
В состоянии термодинамического равновесия система характеризуются как определенными значениями равновесных параметров, так и специальными термодинамическими параметрами, которые при отсутствии равновесия в системе лишены смысла для всей системы (энтропия).
Состояние, в котором хотя бы один из параметров не имеет определенного значения, называется неравновесным.
Энергия – общая мера всех простых форм движения материи (механического, теплового, электромагнитного) при их превращении одной в другую.
Система не обменивающаяся с внешней средой ни веществом ни энергией называется изолированной.
Термодинамический контакт - одна система совершает работ над другой (мех. вз.)
- одна система передает другой теплоту (тепл. вз.)
- одна система передает другой вещество (матер. вз.)
ТД процессом называется всякое изменение хотя бы одного из ТД параметров. ТД процесс – переход системы из одного состояния в другое. Такой процесс всегда связан с нарушением равновесия системы. Нарушением тем значительнее, чем быстрее идет переход. В пределе при бесконечно медленном переходе в каждый определенный момент времени система будет иметь определенные значения параметров и таким образом состояние все время будет равновесным.
Бесконечно медленный процесс, который состоит из последовательности равновесных состояний, называется равновесный квазистатический процесс.