
- •Оглавление
- •1.Предмет и задачи тд. Модели тд.
- •2.Модели тд. Объяснение агрегатных состояний вещества.
- •3.Методы тд.
- •4.Исходные понятия тд.
- •5.Постулаты термодинамики.
- •6.Начала тд.
- •7.Термическое и калорическое уравнения состояния. Термическое уравнение состояние идеального газа.
- •8.Внутренняя энергия идеального газа. Калорическое уравнение состояние идеального газа.
- •9.I начало термодинамики.
- •I начало тд обобщает закон сохранения энергии для тд процессов: количество теплоты, сообщаемое системе, идет на изменение ее внутренней энергии и совершение системой работы.
- •10.Теплоемкость.
- •11.Теплоемкость идеального газа.
- •12. 13.Теорема о равнораспределении энергии по степеням свободы. Число степеней свободы молекул. Число степеней свободы молекул. Выражение для внутренней энергии идеального газа.
- •14.Изохорический процесс: уравнение, график в pv, pt, vt координатах.
- •15.I начало термодинамики в изохорическом процессе.
- •16.Изобарический процесс: уравнение, график в pv, pt, vt координатах.
- •17. I начало термодинамики в изобарическом процессе.
- •18.Изотермический процесс: уравнение, график в pv, pt, vt координатах.
- •19.I начало термодинамики в изотермическом процессе.
- •20.Адиабатический процесс. Уравнение адиабаты. График адиабаты.
- •21.I начало термодинамики в адиабатическом процессе.
- •22.Политропный процесс. Уравнение политропы, показатель политропы, график политропы.
- •23.I начало термодинамики в политропном процессе.
- •24.Изопроцессы как предельные случаи политропного процесса.
- •25.Обратимые и циклические процессы.
- •26. Тепловые машины. Эффективность работы тепловой машины.
- •27.Холодильные машины. Эффективность работы холодильной машины.
- •28.29.Цикл Карно. К.П.Д. Цикла Карно. Идеальная тепловая машина Карно.
- •30. I Теорема Карно.
- •31.II теорема Карно. Реальные тепловые машины.
- •32.II начало термодинамики в формулировках Кельвина и Клаузиуса.
- •33.Тождество Клаузиуса, неравенство Клаузиуса.
- •34. Понятие энтропии. Свойства энтропии. Размерность.
- •35.Энтропия в обратимых и необратимых процессах.
- •36. Энтропия идеального газа.
- •37.III начало тд. Следствия III начала тд.
- •38.Энтальпия.
- •39.Свободная энергия идеального газа.
- •40.Метод тд потенциалов.
- •С 41 по 46 не разделила!смотреть тут(то что красным)!!!:
- •48.Условия равновесия и устойчивости системы в термостате при постоянном объеме.
- •49.Условия равновесия и устойчивости системы в термостате при постоянном внешнем давлении.
- •50.Условия равновесия и устойчивости системы при постоянных энтропии и давлении.
- •51. Условия равновесия и устойчивости системы при постоянных энтропии и объеме.
- •52.Условия равновесия и устойчивости системы с переменным числом частиц в термостате, при постоянных химическом потенциале и объеме.
- •53. Условия равновесия и устойчивости двухфазной однокомпонентной изолированной системы.
- •54.Принцип Ле Шателье-Брауна. Примеры проявления принципа Ле Шателье-Брауна.
- •55.Начала статистической физики: исходные понятия теории вероятности.
- •56.Начала статистической физики: макро- и микросостояния, статистический ансамбль, микроканонический ансамбль, постулат равновероятности.
- •57.Начала статистической физики: эргодическая гипотеза, статистический вес, статистическое толкование энтропии.
- •58.Начала статистической физики: флуктуации.
- •65.Характерные скорости распределения Максвелла: средняя квадратичная скорость.
- •66.Характерные скорости распределения Максвелла: наиболее вероятная скорость.
- •67. Подсчет числа молекул скорости, которых лежат в заданном диапазоне.
- •68.Экспериментальная проверка закона распределения.
- •69.Вывод основного уравнения молекулярно-кинетической теории идеального газа.
- •70.Вывод уравнения состояния. Закон Дальтона. Закон Авогадро.
- •71.72.( Не разделены!)Распределение Больцмана. (72)Барометрическая формула.
- •73.Экспериментальное определение постоянной Авогадро.
- •74.Теорема о равнораспределении энергии по степеням свободы.
- •75.Расхождение теории теплоемкости идеального газа с экспериментом.
- •76.Статистика Ферми-Дирака (подсчет числа микросостояний, функция распределения).
- •77.Статистика Бозе-Эйнштейна (подсчет числа микросостояний, функция распределения).
- •78.Длина свободного пробега.
- •79.Частота столкновений в единицу времени, понятие физического вакуума.
- •80.Явления переноса: теплопроводность.
- •81.Явления переноса: диффузия.
- •82.Явления переноса: вязкое трение.
- •83.Молекулярная теория явлений переноса: вывод уравнения переноса параметра .
- •84.Молекулярная теория явлений переноса: вывод уравнения коэффициента диффузии.
- •85.Молекулярная теория явлений переноса: вывод уравнения коэффициента теплопроводности.
- •86.Молекулярная теория явлений переноса: вывод уравнения коэффициента вязкости.
- •87.Силы и потенциальная энергия межмолекулярного взаимодействия.
- •88.Вывод уравнения Ван-дер-Ваальса.
- •89.Изотермы Ван-дер-Ваальса.
- •Часть 7—6 — отвечает газообразному состоянию;
- •Часть 2—1 — жидкому;
- •Часть 6—2, — горизонтальный участок, соответствующий равновесию жидкой и газообразной фаз вещества.
- •90.Фазовые переходы. Уравнения Клайперона-Клаузиуса.
- •91.Поверхностное натяжение в жидкостях.
- •92.Смачивание
- •93.Капиллярные явления. Формула Лапласса.
- •94.Строение твердых тел. Классификация элементарных ячеек.
- •95.Дефекты кристаллических решеток.
- •96.Температура. Температурные шкалы. Способы измерения.
68.Экспериментальная проверка закона распределения.
Для экспериментальной
проверки было проделано много опытов.
Самый известный – опыт Штерна (1920). На
оси двух коаксиальных цилиндров (
и
)
расположена платиновая нить, покрытая
слоем
.
Нить нагревали током, серебро испарялось,
и его атомы хаотично вылетали по всем
радиальным направлениям. При этом они
имели и различные скорости движения.
Воздух внутри цилиндров откачивался,
чтобы столкновения молекул серебра с
молекулами воздуха не искажали картину.
Атомы серебра равномерно покрывали
поверхность внешнего цилиндра, что
указывало на равновероятность всех
направлений их скорости. Затем во
внутреннем цилиндре - узкая щель,
диафрагмирующая пучок атомов по
направлению (скорости любые по величине).
Внешний цилиндр приводили во вращение
(
)
об/мин.
В зависимости от скорости атомы попадают на разные участки поверхности вращающегося цилиндра, согласно формуле на участок АВ:
.
Чем больше атомов
осаждается на стенке, тем толще пленка.
Измеряя толщину пленки, можем определить
число атомов, обладающих скоростью,
лежащей в некотором диапазоне, т.е.
построить диаграмму, которая при
сглаживании схожа с кривой распределения
Максвелла
.
69.Вывод основного уравнения молекулярно-кинетической теории идеального газа.
Применим распределение Максвелла для вывода основного уравнения кинетической теории газов. Наша задача установить путем статистического усреднения микрохарактеристик молекул системы, некоторые макрохарактеристики, описывающие газ в целом. Известно, что давление газа создается за счет ударов молекул газа о стенки сосуда. Примем, что удар является абсолютно упругим и молекулы бомбардируют стенки как материальные точки под разными углами и с различными скоростями.
По второму закону
Ньютона:
,
.
Молекулы ударяются
о стенку и отскакивают, меняя только
-составляющую
скорости. Подсчитаем изменение
-составляющей
импульса всех молекул за время
.
Надо подсчитать поток импульса молекул
в положительном направлении оси
,
т.е.
м2,
с,
поток – число частиц пролетающих за
единицу времени через единичную площадку.
В стенку ударятся только те молекулы,
которые движутся к ней, а не от нее, т.е.
.
За время
до стенки долетают все молекулы в объеме
,
.
Вероятность частиц
иметь такую скорость
,
тогда число частиц, имеющих такую
скорость
.
Импульс, передаваемый
стенке сосуда
,
вычислим
отдельно внутренний интеграл и подставим
в выражение
,
рассчитаем интеграл, сделав замену
переменной,
,
,
,
отсюда
,
,
,
,
,
подставим полученное в интеграл:
.
Таким образом давление на стенку
.
Аналогично для
других стенок
,
с другой стороны
,
тогда
,
таким образом
,
- основное уравнение молекулярно-кинетической
теории идеального газа.
Отсюда можно получить уравнение состояния идеального газа:
- уравнение
состояния идеального газа.
70.Вывод уравнения состояния. Закон Дальтона. Закон Авогадро.
, - основное уравнение молекулярно-кинетической теории идеального газа.
Отсюда можно получить уравнение состояния идеального газа:
- уравнение состояния идеального газа.
Если имеется смесь
газов, то
- закон Дальтона (Давление смеси
химически не взаимодействующих идеальных
газов равно сумме парциальных давлений)
Закон Авогадро: В равных объемах газов (V) при одинаковых условиях (температуре Т и давлении Р) содержится одинаковое число молекул.
Первое следствие из закона Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объём.
В частности, при нормальных условиях, т.е. при 0° С (273К) и 101,3 кПа, объём 1 моля газа, равен 22,4 л/моль. Этот объём называют молярным объёмом газа Vm. Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона:
.
Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму.
Используя распределение молекул по высоте Ж.Перрен экспериментально определил постоянную Авогадро. Он исследовал под микроскопом распределение броуновских частиц, т.е. считал под микроскопом число таких частиц на разных высотах в сосуде. Частицы были помещены в жидкость, плотность которой лишь на немного меньше плотности материала частиц, для того чтобы тяжелые частицы не «осели на дно», а распределились в достаточно большом слое по высоте.
,
где
- масса частицы,
- масса вытесненной воды.
,
.