Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы термодинамика.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
4.06 Mб
Скачать

58.Начала статистической физики: флуктуации.

  • Говорят, что величина флуктуирует, если ее значение колеблется около среднего. В статистической физике и термодинамике обычно имеются в виду флуктуации внутренних параметров в состоянии термодинамического равновесия.

Мерой флуктуаций является стандартное отклонение от среднего значения, которое определено равенством для дискретных величин:

При вычислении этой величины усреднение по времени можно заменить усреднением по ансамблю.

Стандартное отклонение растет медленнее, чем общее число частиц в системе, в то время как среднее растет пропорционально числу частиц в системе. Следовательно, относительное стандартное отклонение убывает сростом числа частиц в системе.

Расчет относительной величины флуктуации с помощью распределения Пуассона дает величину:

.

Отметим, что относительная роль флуктуаций возрастает с уменьшением области, в которой эти флуктуации рассматриваются. Если область стремится к величине объема системы, то число частиц в этой области стремится к числу частиц системы.

Так как флуктуации уменьшаются как , следовательно, с ростом числа частиц в макросистемах флуктуации становятся ничтожно малыми.

Поэтому поведение системы большого числа частиц можно описывать с помощью средних величин, характеризующих систему.

С 59 ПО 63 НЕ РАЗДЕЛИЛА ИЛИ НЕ НАШЛА!

59.Классическая статистика Максвелла-Больцмана: подсчет числа состояний.

60.Классическая статистика Максвелла-Больцмана: вывод функции распределения Больцмана (дискретное распределение).

61.Распределение Максвелла-Больцмана.

62.Распределение Максвелла по проекциям скоростей (определение константы из условия нормировки).

63.Распределение Максвелла по абсолютному значению скорости.

64.Характерные скорости распределения Максвелла: средняя арифметическая скорость.

Средняя арифметическая скорость:

выделим для замены переменной

сделаем замену переменной

и учтем, значение табличного интеграла: , , получим после сокращения констант:

, где - постоянная Больцмана, - масса молекулы, преобразуем, умножив числитель и знаменатель дроби на число Авогадро:

, где - молярная масса компоненты системы.

Результат: - средняя арифметическая скорость движения молекул идеального газа.

65.Характерные скорости распределения Максвелла: средняя квадратичная скорость.

Средняя квадратичная скорость:

,

сделаем замену переменной:

, тогда , , отсюда ,

, разделим переменные и найдем связь между и

, подставим полученное значение в дифференциал:

, .

Подставим все в интеграл:

преобразуем,

, учтем значение табличного интеграла:

, таким образом

- средняя квадратичная скорость.

66.Характерные скорости распределения Максвелла: наиболее вероятная скорость.

Наиболее вероятная скорость:

Наиболее вероятная скорость – это скорость, соответствующая максимуму кривой распределения молекул по скоростям, т.е. должно выполнятся условие:

обозначим константу и найдем производную произведения

так как величина , то должно выполняться условие:

, ,

- скорость наиболее вероятная.

67. Подсчет числа молекул скорости, которых лежат в заданном диапазоне.

П ри комнатной температуре средняя арифметическая скорость движения молекул:

, а характеристические скорости водорода в 4 раза больше.

Как посчитать число молекул, скорости которых лежат в заданном диапазоне?

Если - число молекул в единице объема, то - число молекул, скорости которых распределены в интервале от до равно:

, если учесть что , и введя переменные , , , то

- такой вид более нагляден, для анализа формы кривой распределения Максвелла. В книгах имеются таблицы интеграла: с их помощью упрощаются вычисления величины .

Из таблиц в частности находим, что:

; ;

Т.о. большая часть молекул имеет скорости в сравнительно небольшом интервале около наиболее вероятной, а молекул со скоростями вне этого интервала сравнительно мало.