- •1.Роль нефти и газа в топливно-энергетическом балансе страны
- •2.Значение геологии и геохимии нефти и газа в развитии нефтегазового комплекса России
- •3.Основные черты геохимии углерода и водорода
- •4. Каустобиолиты. Положение среди горных пород. Генетическая классификация
- •5. Органическое вещество пород (ов). Его состав и свойства
- •6. Образование и преобразование ов на стадии диагенеза
- •7. Особенности распределения ов в литосфере
- •8. Рассеяное и концентрированное ов в осадочном чехле
- •9. Битумоиды. Их состав и свойства
- •10. Кероген, его типы
- •11. Генетические типы ов и его преобразование на стадии катагенеза
- •12. Реконструкция палеотемператур на основе изучения отражательной способности витринита
- •13. Эволюционная зональность нефтегазообразования. Главная зона нефтеобразования («нефтяное окно»).
- •14. Нефтегазоматеринский потенциал и методы его определения (Рок Эвал). Классификация нефтегазоматеринских пород
- •15. Физико-химические свойства нефтей.
- •16. Групповой углеводородный состав нефтей.
- •18. Значение изопреноидных углеводородов в составе нефтей. Определение типа исходного ов и степени «зрелости».
- •19. Неуглеводородные компоненты в составе нефтей
- •20. Геохимическая классификация нефтей Классификация нефтей по групповому углеводородному составу.
- •21.Продукты природного изменения нефтей. Природные битумы
- •22. Типы природных газов, их физические параметры и свойства
- •Классификация газов
- •Физико-химические свойства газов.
- •23. Газовые гидраты. Условия их образования
- •24. Условия образования газоконденсатных залежей. Первичные и вторичные газоконденсаты
- •25. Основные методы исследований углеводородных флюидов и ов пород (газожидкостная хроматография, масс-спектрометрия, ядерно-магнитный резонанс и др.)
- •1. Современное состояние проблемы происхождения нефти
- •2. Концепция органического (биогенного) происхождения нефти
- •3. Концепция неорганического (абиогенного) происхождения нефти
- •4. Породы-коллекторы. Их классификация
- •5. Нетрадиционные (глинистые, кремнистые, вулканогенные и др.) коллекторы. Особенности их формирования.
- •6. Породы-покрышки (флюидоупоры) в разрезе осадочного чехла. Их классификация
- •7. Литолого-фациальные и палеогеографические условия формирования коллекторов и покрышек
- •8. Природные резервуары в осадочном чехле. Их классификация
- •9. Термобарические условия природных резервуаров
- •10. Фации и формации благоприятные для нефтегазообразования и нефтегазонакопления
- •11. Регионально нефтегазоносные комплексы в разрезе осадочного чехла. Их классификация.
- •12,13. Первичная и вторичная миграция углеводородов
- •15. Масштабы и направления миграции углеводородов. Методы их определения Классификация миграции процессов.
- •Масштабы (расстояние) миграции углеводородов в земной коре.
- •Определение направления миграции.
- •16. Представления о дифференциальном улавливании углеводородов в процессе их миграции и формирования залежей Принцип Гассоу-Максимова.
- •17. Механизмы формирования залежей углеводородов
- •18. Значение ретроградных процессов (ретроградное испарение, ретроградная конденсация) при формировании залежей.
- •19. Геологическое время формирования залежей нефти и газа. Методы его определения.
- •20.Переформирование и разрушение залежей углеводородов
- •21. Зональность регионального нефтегазонакопления
- •22.Вертикально-стратиграфическая и геоструктурная зональности нефтегазонакопления
- •23. Фазовая зональность размещения скоплений нефти и газа в земной коре
- •24. Главнейшие закономерности размещения скоплений нефти и газа в земной коре
- •25. Основные принципы нефтегазогеологического районирования.
- •1. Понятие о локальных и региональных скоплениях углеводородов
- •2. Ловушки нефти и газа. Их классификация.
- •3. Генетическая классификация залежей нефти и газа
- •3.Методы определения времени формирования ловушек
- •5.Смотри№19
- •6. Условия формирования структурного класса залежей.
- •7. Условия формирования литологического класса залежей
- •8. Условия формирования стратиграфического класса залежей
- •9. Условия формирования залежей, связанных с рифовыми массивами
- •10. Сводовая залежь антиклинальной структуры
- •11. Тектонически-экранированная залежь в локальной структуре
- •12.Залежь, осложненная диапиризмом, грязевым вулканизмом или солянокупольной структурой.
- •13.Залежь, приконтактная с соляным штоком
- •14.Висячие залежи антиклинальных структур. Условия их образования
- •21. Залежь, связанная со стратиграфическими несогласиями в пределах локальной структуры
- •22. Залежь, связанная со стратиграфическим несогласием на моноклинали
- •23.Залежь, запечатанная асфальтом
- •24. Гидродинамически экранированная залежь
- •25. Залежь, тектонически экранированная, поднадвиговая
15. Физико-химические свойства нефтей.
Плотность – количество массы, заключенной в единице объема. В поверхностных условиях плотность нефти во многом зависит от того сколько содержится в ней относительно легких бензиновых, керосиновых фракций и тяжелых асфальтовых, смолистых. А в пластовых условиях плотность нефти зависит не только от ее состава, но и от температуры, давления, содержании газа в нефти и ряда других условий. У нас в России нефти подразделяются по плотности на следующие типы:
- очень легкие нефти (до 0,8 г/см3)
-легкие нефти (от 0,8 до 0,84 г/см3)
- средние нефти (от 0,840 до 0,880 г/см3)
- тяжелые нефти (от 0,880 до 0,920 г/см3)
- очень тяжелые (более 0,920 г/см3)
2)Вязкость это внутреннее трение, возникающее между двумя смежными слоями жидкости, которое необходимо преодолеть, чтобы началось их взаимное перемещение
Динамическая вязкость это сила сопротивления, которую необходимо преодолеть для перемещения двух слоев жидкости относительно друг друга, площадью 1 см2 каждый на 1 см со скоростью 1 см/с.
Кинематическая вязкость это отношение динамической вязкости к плотности нефти. В единицах системы СГС измеряется в стоксах (см2/с). В единицах системы СИ: 1104 м2/с
3) поверхностное натяжение – это сила, с которой нефть сопротивляется изменению своей поверхности. Обусловлено тем, какие молекулярно-поверхностные свойства нефти на различных границах фаз: нефти и газа нефти и пластовых вод, нефти и поверхности твердого тела. Физико-химические свойства поверхностей раздела твердой (породы) и жидких фаз (нефть, пластовая вода) и их взаимодействие характеризуется рядом показателей, в том числе гидрофильность (способность вещества смачиваться водой) и гидрофобность (неспособность вещества смачиваться водой).
Капля воды или нефти, например на поверхности стекла стремится приобрести форму шара, капля нефти на поверхности воды растекается в виде пленки.
4) Сжимаемость нефти зависит от давления, температуры, самого состава нефти и содержания в нефти газа. Чем больше содержание растворенного газа в нефти, тем выше коэффициент сжимаемости. Температура кипения нефти зависит от содержания в ней тех или иных компонентов и их строение. Чем выше % легких углеводородов, тем меньше температура кипения.
Температура кипения нефти. Температура кипения нефти зависит от содержания в ней тех или иных компонентов и от их строения. Чем выше концентрация в нефти легких углеводородов, тем ниже ее температура кипения.
Температура плавления, температура застывания и теплота сгорания нефти.
Плавление это процесс перехода вещества из твердой фазы в жидкую при повышении температуры до точки плавления. Этот процесс во многом зависит от состава вещества и давления. При постоянном внешнем давлении плавление чистого вещества происходит при постоянной температуре. В связи с тем, что в нефтях содержатся много различных по составу компонентов, температура плавления определяется как интервал температур
5) температура застывания нефти. За температуру застывания принимают температуру, при которой уровень нефти, помещенной в пробирку, при наклоне этой пробирки на 450 не изменяется. Встречаются нефти с положительной температурой застывания. Как правило, это нефти, содержащие в своем составе парафинистые соединения, а без парфинистые имеют отрицательную температуру застывания. Например, большинство нефтей Волго-Уральской области имеют температуру застывания 0 0С, а нефти Пха на Сахалине не застывают даже при температуре ниже 30 0С. В среднем температура сгорания нефти составляет 10400-11000 кКал/кг [Дж/кг]; природный газ 46 Дж/кг; нефть – 45 Дж/кг; антрацит – 35 Дж/кг; каменный уголь – 34 Дж/кг; бурый угль – 28 Дж/кг; торф – 14 Дж/кг; горючий сланец – 9 Дж/кг.
6) растворимость и растворяющая способность нефти. Если пластовое давление <, то в ней меньше растворенного газа. Если пластовое давление >, то и растворенного газа больше. Нефть обладает способностью растворять углеводородные газы.
Теоретически в 1м3 нефти может раствориться до 400 м3 газа. На практике до 100 м3 газа. Это соотношение объема газа растворенного в единице S нефти называется газовым фактором. Газ находится в растворенном состоянии в нефти до достижения давления насыщения газом – это давление при котором из нефти начинают выделяться пузырьки газа. Существуют специальные установки, которые это определяют.
Если объем газа в залежи намного превышает объем нефти, то при температуре пласта 90-100 0С и давлении 200-250 атмосфер часть жидких углеводородов нефти переходит а парообразное состояние и растворяется в газе. Этот процесс называется ретроградным (обратным) испарением. При снижении пластового давления эта часть жидких углеводородов растворившихся в газе начинает выпадать снова в жидкую фазу, и этот процесс называется обратной или ретроградной конденсацией. В природе существует обратное испарение и прямая конденсация.
7) Электрические свойства нефти – способность проводить или не проводить электрический ток. Например, удельное электрическое сопротивление пластовых вод составляет в среднем от 0,05 до 1 Ом/м, в дистиллированной воде 10-3 Ом/м, а нефть обладает высоким удельным сопротивлением от 1010 до 1014 Ом/м и следовательно нефть является диэлектриком, нефть не проводит электрический ток. На этих свойствах нефти пластовых вод и вмещающих пород базируется такой важный метод исследования скважин, который часто называют каротаж. Базируются некоторые другие пылевые геофизические исследования, в частности электроразведка
