
- •Эволюция операционных систем. Структура вычислительной системы
- •Понятие операционной системы.
- •Функции операционных систем.
- •Основные понятия и концепции ос.
- •Архитектурные особенности ос.
- •Классификация ос.
- •Краткие сведения об архитектуре компьютера.
- •История создания ос корпорации Microsoft.
- •Системы Unix и Linux.
- •Дистрибутивы Linux.
- •Процессы. Понятие процесса.
- •Состояния процесса.
- •Одноразовые операции. Упрощенная иеархическая структура процессов.
- •Многоразовые операции. Приостановка, блокирование и разблокирование процесса.
- •Переключение контекста. Выполнение операции разблокирования процесса.
- •Планирование процессов. Уровни планирования процессов.
- •Критерии планирования и требования к алгоритмам.
- •Вытесняющее и невытесняющее планирование.
- •Алгоритм планирования First-Come, First-Served (fcfs).
- •Алгоритм планирования Round Robin (rr).
- •Алгоритм планирования Shortest-Job-First (sjf).
- •Гарантированное планирование.
- •Приоритетное планирование.
- •Многоуровневые очереди с обратной связью (Multilevel Feedback Queue).
- •Категории средств обмена информацией.
- •Логическая организация механизма передачи информации. Установка связи.
- •Особенности передачи информации с помощью линий связи.
- •Буферизация.
- •Поток ввода/вывода и сообщения.
- •Надежность средств связи. Завершение связи.
- •Потоки исполнения.
- •Алгоритмы синхронизации. Interleaving, race condition и взаимоисключения.
- •Критическая секция.
- •Программные алгоритмы организации взаимодействия процессов.
- •Требования, предъявляемые к алгоритмам синхронизации.
- •Запрет прерываний.
- •Переменная-замок.
- •Флаги готовности.
- •Алгоритм Петерсона.
- •Команда Test-and-Set (проверить и присвоить).
- •Команда Swap (обменять значения).
- •Механизмы синхронизации процессов и потоков.
- •Цели и средства синхронизации.
- •Решение проблемы producer-consumer с помощью семафоров.
- •Wait-функции и ожидаемые таймеры.
- •События и семафоры.
- •Мьютексы.
- •Реализация мониторов и передачи сообщений с помощью семафоров.
- •Реализация семафоров и передачи сообщений с помощью мониторов
- •Реализация семафоров и мониторов с помощью очередей сообщений
- •Управление памятью. Физическая организация памяти
- •Физическая организация памяти компьютера
- •Свойство локальности
- •Логическая память
- •Связывание адресов
- •Функции системы управления памятью
- •59. Схема управления памятью с одним процессом в памяти
- •Страничная память
- •Сегментная и сегментно-страничная организация памяти
- •Виртуальная память. Архитектурные средства поддержки виртуальной памяти. Понятие виртуальной памяти
- •Архитектурные средства поддержки виртуальной памяти
- •Страничная виртуальная память
- •Сегментно-страничная организация виртуальной памяти
- •Структура таблицы страниц
- •Ассоциативная память
- •Размер страницы
- •Аппаратно-независимый уровень управления виртуальной памятью. Исключительные ситуации при работе с памятью
- •Стратегии управления страничной памятью
- •Алгоритмы замещения страниц: общие правила, классификация, эффективность
- •Алгоритм fifo
- •Аномалия Билэди
- •Оптимальный алгоритм (opt)
- •Алгоритм nru
- •Алгоритм lru
- •Программное моделирование алгоритма lru
- •Трешинг
- •Моделирование рабочего множества
- •Страничные демоны (сервисы). Фоновый процесс
- •Программная поддержка сегментной модели памяти процесса
- •Файловая система. Файлы с точки зрения пользователя. Функции файловой системы
- •Общие сведения о файлах (имена, типы, атрибуты)
- •Организация файлов и доступ к ним (последовательный, прямой). Формы организации файлов
- •Операции над файлами
- •Директории. Логическая структура файлового архива
- •Разделы диска
- •Операции над директориями
- •Защита файлов
- •Реализация файловой системы. Общая структура файловой системы. Блок-схема файловой системы
- •Управление внешней памятью. Методы выделения дискового пространства
- •Выделение непрерывной последовательностью дисковых блоков
- •Связанный список. Хранение файла в виде связанного списка дисковых блоков.
- •Индексные узлы.
- •Управление свободным и занятым дисковым пространством.
- •Структура файловой системы на диске. Примерная структура файловой системы на диске.
- •Связывание файлов. Структура файловой системы с возможностью связывания файла с новым именем.
- •Кооперация процессов при работе с файлами.
- •Примеры разрешения коллизий и тупиковых ситуаций.
- •Hадежность файловой системы.
- •Целостность файловой системы.
- •Порядок выполнения операций.
- •Журнализация.
- •Производительность файловой системы. Кэширование.
- •Современные архитектуры файловых систем.
- •Дополнительные возможности современных файловых систем (на примере ntfs ос Windows xp).
- •Система управления вводом-выводом
- •Физические принципы организации ввода-вывода.
- •Общие сведения об архитектуре компьютера.
- •Прямой доступ к памяти (Direct Memory Access – dma).
- •Структура системы ввода-вывода. Логические принципы организации ввода-вывода.
- •Структура подсистемы ввода-вывода. Драйверы.
- •Функции подсистемы ввода-вывода.
- •Компоненты подсистемы ввода-вывода (структурная схема).
- •Диспетчер ввода-вывода.
- •Типовая обработка ввода-вывода.
- •Установка драйвера.
- •Диспетчер электропитания.
- •Сетевые и распределенные операционные системы.
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей.
- •Основные вопросы логической организации передачи информации между удаленными процессами.
- •Понятие протокола.
- •Многоуровневая модель построения сетевых вычислительных систем. Семиуровневая эталонная модель osi/iso.
- •Проблемы адресации в сети. Одноуровневые адреса. Двухуровневые адреса.
- •Удаленная адресация и разрешение адресов. Схема разрешения имен с использованием dns-серверов.
- •Основные понятия информационной безопасности. Угрозы безопасности
- •Формализация подхода к обеспечению информационной безопасности.
- •Криптография как одна из базовых технологий безопасности ос.
- •Шифрование. Шифрование открытым ключом.
- •Шифрование с использованием алгоритма rsa.
- •Защитные механизмы ос. Идентификация и аутентификация
- •Пароли, уязвимость паролей.
- •Шифрование пароля.
- •Авторизация. Разграничение доступа к объектам ос.
- •Аудит системы защиты.
- •Анализ некоторых популярных ос с точки зрения их защищенности: ms-dos; Windows nt/2000/xp; Windows Vista; Windows 7.
- •Брандмауэр ос ms Windows.
Криптография как одна из базовых технологий безопасности ос.
Многие службы информационной безопасности, такие как контроль входа в систему, разграничение доступа к ресурсам, обеспечение безопасного хранения данных и ряд других, опираются на использование криптографических алгоритмов.
Шифрование – процесс преобразования сообщения из открытого текста (plaintext) в шифротекст (ciphertext) таким образом, чтобы:
его могли прочитать только те стороны, для которых оно предназначено;
проверить подлинность отправителя (аутентификация);
гарантировать, что отправитель действительно послал данное сообщение.
В алгоритмах шифрования предусматривается наличие ключа. Ключ – это некий параметр, не зависящий от открытого текста. Результат прим-ия алгор. шифрования зависит от используемого ключа. В криптографии принято правило Керхоффа: «Стойкость шифра должна определяться только секретностью ключа». Правило Керхоффа подразумевает, что алгоритмы шифрования должны быть открыты.
В методе шифрования с секретным или симметричным ключом имеется один ключ, который используется как для шифрования, так и для расшифровки сообщения. Такой ключ нужно хранить в секрете.
Это затрудняет использование системы шифрования, поскольку ключи должны регулярно меняться, для чего требуется их секретное распространение. Наиболее популярные алгор. шифрования с секретным ключом: DES, TripleDES, ГОСТ и др.
Часто используется шифрование с помощью односторонней функции, называемой также хеш- или дайджест-функцией. Применение этой функции к шифруемым данным позволяет сформировать небольшой дайджест из нескольких байтов, по которому невозможно восстановить исходный текст. Получатель сообщения может проверить целостность данных, сравнивая полученный вместе с сообщением дайджест с вычисленным вновь при помощи той же односторонней функции. Эта техника активно используется для контроля входа в систему. Например, пароли пользователей хранятся на диске в зашифрованном односторонней функцией виде. Наиболее популярные хеш-функции: MD4, MD5 и др.
Также существует шифрование с открытым или асимметричным ключом (public/assymmetric key) используется два ключа. Один из ключей, называемый открытым, несекретным, используется для шифрования сообщений, которые могут быть расшифрованы только с помощью секретного ключа, имеющегося у получателя, для которого предназначено сообщение.
Шифрование. Шифрование открытым ключом.
Шифрование – процесс преобразования сообщения из открытого текста (plaintext) в шифротекст (ciphertext) таким образом, чтобы:
его могли прочитать только те стороны, для которых оно предназначено;
проверить подлинность отправителя (аутентификация);
гарантировать, что отправитель действительно послал данное сообщение.
В алгоритмах шифрования предусматривается наличие ключа. Ключ – это некий параметр, не зависящий от открытого текста. Результат прим-ия алгор. шифрования зависит от используемого ключа. В криптографии принято правило Керхоффа: «Стойкость шифра должна определяться только секретностью ключа». Правило Керхоффа подразумевает, что алгоритмы шифрования должны быть открыты.
В системах шифрования с открытым или асимметричным ключом (см. рис.) (public/ assymmetric key) используется два ключа.
Один
из ключей, называемый открытым,
несекретным, используется для шифрования
сообщений, которые могут быть расшифрованы
только с помощью секретного ключа,
имеющегося у получателя, для которого
предназначено сообщение.
Иногда поступают по-другому. Для шифрования сообщения используется секретный ключ, и если сообщение можно расшифровать с помощью открытого ключа, подлинность отправителя будет гарантирована (система электронной подписи). Этот принцип изобретен Уитфилдом Диффи (Whitfield Diffie) и Мартином Хеллманом (Martin Hellman) в 1976.
Использование открытых ключей снимает проблему обмена и хранения ключей, свойственную системам с симметричными ключами. Открытые ключи могут храниться публично, и каждый может послать зашифрованное открытым ключом сообщение владельцу ключа. Однако расшифровать это сообщение может только владелец открытого ключа при помощи своего секретного ключа, и никто другой. Несмотря на очевидные удобства, связанные с хранением и распространением ключей, асимметричные алгоритмы гораздо менее эффективны, чем симметричные.