Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
moya_shpora (1).doc
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
2.12 Mб
Скачать

1.Предмет эконометрики, её связь с другими науками

Термин «эконометрика» возник в 20 веке и изучает количественные и качественные экономические взаимосвязи с помощью математических и статистических методов и моделей.

Эконометрика- это наука, изучающая количественные закономерности экономических явлений и процессов, с помощью статистических методов и моделей.

Эконометрика дает инструментарий для экономических измерений, а также методологию оценки параметров моделей микро и макроэкономики. Кроме того, эконометрика активно используется для прогнозирования экономических процессов как в масштабах экономики в целом, так и на уровне отдельных предприятий.

Эконометрика входит в обширное семейство дисциплин, посвященных измерениям и применению статистических методов в различных областях науки и практики. К этому семейству относятся, в частности, биометрия, наукометрия, психометрия, хемометрия, квалиметрия. Особняком стоит социометрия — этот термин закрепился за статистическими методами анализа взаимоотношений в малых группах, то есть за небольшой частью такой дисциплины, как статистический анализ в социологии

2. Этапы эконометрического исследования.

  1. Постановка проблемы.

  2. Получение данных и анализ их качества.

Данные должны быть получены по однородной совокупности и не смешивать явления.

  1. Спецификация модели. Спецификация – выбор показателей и конкретной модели (конкретных показателей которые будут исследованы, выбор определенной модели решения.) Она тесно связана с постановкой проблемы.

  2. Оценка параметров модели. Некоторые параметры являются константами.

y = a+bx ; a и b - параметры, y и x –переменные.

Данные обладают свойствами как, ошибки наблюдения и ошибки выборочного наблюдения.

Все данные являются выборочными полученные на 2-ом этапе, поэтому параметры модели рассчитанные по этим данным являются не точными значениями этих (истинных) параметров, а их оценкой. Кроме самих параметров на этом этапе оцениваются их качество.

  1. Интерпретация и использование результатов исследования (прогнозирование)

3. Виды эконометрических моделей

Эконометрические модели можно классифицировать по:

1.Видам связей между показателями.

А)Стахастические – эти связи имеют элемент случайности. Частный случай стахастических связей - это корреляционные связи.

Корреляционная связь – это связь при котором конкретным значением фактора соответствует определенные средние значения результата, т.е. функциональные зависимости. Например: средняя стоимость проезда зависит от расстояния, значение результата , которое было рассчитано по модели отражающую корреляционную связь, путем подстановки в нее значения факторов, называется выровненным или теоретическим значением результата и обозначается .

Отклонение фактического значения результата от выравненного, определяется случайными факторами. Не может быть точно рассчитано заранее до проведения наблюдения, называемое отклонение – есть случайный остаток или случайное отклонение (ошибка) и обозначается

y = a + bx +

Функция которая отражает зависимость выравненных значений результатов от значений фактора называется функцией регрессии, или эта функция отражает корреляционную связь между показателями.

= a + bx

y = a + bx + Ԑ

Модель включает в себя регрессию и может включать тождество

Б) Функциональные – это связи где значение одних показателей однозначно определяет значение других показателей. Те показатели которые оказывают влияние называются независимыми переменными – факторы(х)

Показатели на которые оказывается влияние называются зависимые переменные – результатами(у)

Частный случай функции связи:

y = x + z , z – тоже фактор. y-доход, x- расход, z- накопление.

Такое выражение называется тождеством, в нем все параметры известны.

2. По количеству уравнений входящих в эконометрическую модель. Модель может состоять из одного уравнения – регрессии, или нескольких уравнений – система эконометрических уравнений.

3.По форме функции использованной в регрессии. Соответственно различают линейные и нелинейные регрессии.

4.По количеству факторов входящих в уравнение регрессии. С одним фактором – парная регрессия ( результат и фактор), если 2 и более – множественная.

5. По типу данных.

А) простейшая модель(классическая нормальная линейная модель)

Б) более сложная – модель с фиктивными переменными (хотя бы один из факторов является неколичественной переменной)

В) Логит и пробит модели – это модели в которых результат является неколичественной переменной и может принимать два значения либо количественное с переменной значением 0;1,

Г) Модели с цензурированными данными и тобит модели – это модели у которых на значение результата наложены ограничения не ниже, не выше.

Д) модели временного ряда

=a + bt + - модель Тренда

t- номер момента времени

y- показатель который меняется во времени, итд

6.По временной принадлежности данных.

А) пространственные данные – это данные взятые для разных единиц совокупности, в один и тот же момент времени.

Б) модели с временными данными. Это данные взятые для одной совокупности в разные моменты времени.

В) Модели с панельными данными. Модель для данных объединяющая предыдущие 2 типа.

4.Способы определения формы связей между показателями.

Определение формы - это выбор конкретной математической функции которая описывает определенную связь.

1-й способ Графический

Достоинство этого метода наглядность

Недостаток – неточность. Можно найти конкретный результат(частный график), но невозможно построить общий график

2-й способ Теоретический (аналитический).

Из предыдущих исследований известны сведения о форме функции.

3-й Экспериментальный.

Основной метод который предполагает расчет параметров разных функций(на основе наших исходных данных) и выборе из этих функций наилучшей по определенным критериям. Основной задачей экспериментального способа – это анаиз зависимости между переменными показателями. Значимость может быть функциональной или статистической.

Функциональная (детерминированная) зависимость – задается в виде формулы, которая каждому значению одной переменной ставит в соответствие строго определенное значение другой переменной(воздействием случайных факторов при этом принебрегают).

Статистическая зависимость – это связь переменных на которую накладывается воздействие случайных факторов. При этом изменение одной переменной приводит к изменению математического ожидания – наиболее вероятного ожидаемого значения другой переменной. Уравнение регрессии – это формула статистической связи между переменными. Если эта формула линейна, она представляет собой линейную регрессию, а если нелинейная, то представляет собой нелинейную регрессию.

5. Общий вид модели линейной регрессии.

y = a + bx +Ԑ - парная регрессия (частный случай)

- это множественная регрессия(общий вид)

p-количество факторов

В уравнении регрессии коэффициент при факторе называется коэффициентом регрессии. Во множественной регрессии иногда его называют коэффициент условно чистой регрессии.

Матричная запись уравнения линейной регрессии.

Y =

X=

Вектор параметров уравнения регрессии.

B=

Вектор случайных остатков.

E =

6. Понятие и показатели силы связи в линейной регрессии

Сила связи характеризует, на сколько единиц в среднем изменится результат при изменении фактора на одну единицу.

- прямая связь. Сила связи больше, где больше ∆y.

∆y Различают след. показатели силы связи:

  1. абсол. показатель – коэф-т регрессии (изменение результата при изм-ии фактора на 1 ед.). Он хар-ет также направление связи (если b>0, то связь прямая, если b<0, то обратная).

Абсолютные пок-ли силы связи измеряются в тех же ед-х, что и изучаемые показ-ли. (руб,кг,шт..)

2) относительный показатель – коэф-т эластичности (изменение в среднем результата с изм-ем фактора на 1%). Это универсальный показатель силы связи, который рассчитывают для лин. и нелин. функций.

Например, для парной лин. регрессии y=a+bx+

Э=b*(x/ a+bx). Он не является постоянной величиной (изм-ся х). обычно для усредненной характеристики Э по линейной функции берут х среднее.

3) относит. показатель – стандартизированный коэф-т регрессии (рассчитывается только для множественной регрессии). Стандартизация: t = y-y‾/ сигма y. Так как для станд. переменных альфа а=0, то ур-ие регрессии в станд. масштабе примет вид: y=в1 * tх1 + …+вp * txp +e. в=L * сигма х/сигма y, где L-коэф-т при х в исходной множ. регрессии.

При интерпретации коэф-та в ед. измерения – это сигма (ср. квадр. отклонение).

Относит. Показатели силы применяются,чтобы сравнивать факторы по силе (обеспечить сопоставимость влияния показателей фактора на рез-т, чего не могут абсол. Показ-ли, т.к. изменения м.б несоизмеримыми)

Можно сравнивать м\д собой коэф-т эластичности и стандартизир.показ-ли.

Вопрос №7. Понятие и показатели тесноты связи.

Вопрос №8. Особенности вычисления показателей тесноты связи парной линейной регрссии.

Когда мы изучаем тесноту связи, то мы смотрим, насколько близко реальные (фактические) значения расположены к линии регрессии (т.е. насколько близко точки к линии). Чем ближе, тем теснее.

На рис. 5 фактор лучше объясняет результат, чем на рис. 4. На рис. 4 скорее всего вмешивается еще какой-то фактор (а может и не один), который объясняет эту зависимость.

Поэтому если точки лежат близко, то выбираем функции вида: .

У

Рис. 5: Невысокий показатель тес­ноты связи: большой разброс точек

А если далеко, то функции вида: Показатели тесноты связи показывает, насколько фактор или фак­торы, включенные в модель регрессии, объясняют изменение результата.

Рис. 4: Высокий показатель тесно­ты связи: небольшой разброс точек

Показатели тесноты связи показывают насколько фактор или факторы, включенные в модель регрессии, объясняют изменение результата. Величина характеризует тесноту связи (чем он меньше, тем связь тес­нее), с помощью метода наименьших квадратов мы оптимизировали эти отклонения. характеризует разброс точек, тесноту связи.Эта величина является характеристикой связи, но ее нельзя использо­вать как показатель связи ввиду следующего недостатка: данная величина зависит от единиц измерения исходных показателей, если исходные показа­тели имеют разные единицы измерения, то тогда показатели будут несопо­ставимы.

Поэтому для того, чтобы получить показатель тесноты связи, приду­мали использовать правило сложения дисперсий. Это правило изучалось на лекциях по статистике для аналитической группировки, для линейной дисперсии это правило выглядит следующим образом:

Можно сделать вывод о том, что деление на n можно опустить, тогда ничего не изменится:

Где общая сумма квадратов . - факторная сумма квад­ратов: - остаточная сумма квадратов. Основной недостаток суммы квадратов в его размерности, но оказыва­ется, что это часть от общей суммы:

Если , тогда связь максимально тесная. Ограничение такое, так как у нас часть целого:

Ч ем ближе к нулю, тем связь теснее, чем ближе к единице, тем связь слабее по этой формуле.

Можно, в принципе, использовать данное выражение как показатель тесноты связи, но удобнее, чтобы тесная связь была, когда ближе к 1. Поэтому рассмотрим другую формулу (которая и представляет собой показатель тесноты связи):

Если SSocm большая, то показатель стремится к нулю, и связь слабая.

Для линейных функций этот показатель называется коэффициентом детерминации, а если факторов много, то называется коэффициентом множественной детерминации.

Из правил сложения дисперсий следует:

С ним есть функционально связанный показатель - коэффициент кор­реляции (или коэффициент множественной корреляции, если фак­торов много):

Для того, чтобы оценить, насколько тесна связь, используется шкала Чеддока (о силе связи судит, только по абсолютному значению , т.е берем по модулю, а, вообще, он может быть и отриц. и положит.):

0,1 – 0,3 - связь слабая

0,3 – 0,5 - связь умеренная

0,5 – 0,7 - связь заметная

0,7 – 0,9 - связь тесная

0,9 – 0,99 - связь очень тесная

В ыводы по R: допустим, =0,76 , а значит, что связь между валовым доходом и среднегодовой стоимостью основных фондов и оборотных средств тесная. Выводы по делаются глядя на

- доля факторной дисперсии в общей дисперсии результата.

Следовательно, вариация валового дохода на 76% обусловлена вариацией факторов, включенных в модель регрессии, то есть вариацией среднегодовой стоимости основных фондов и оборотных средств.

- обычно для множ регрессии, а если парная линейная регрессия, то

Эта формула действует хороша только для парной регрессии.

Следовательно: . Если r=0,72, то связь тесная (смотрим на модуль) минус показывает, что связь обратная.

9. Предпосылки построения классической нормальной линейной модели

В этой модели предполагается, что связь между показателями является корреляционной. Результат y представляет собой совокупность случайных величин. Для каждого значения фактора х своя случ. величина.

Ряд требований:

  1. случ. величина yi распределена по нормальному закону (мода, медиана, мат. ожидание. Дисперсии случ. величин yi и yj одинаковы. Случ. величны независимы для любых ij)

  2. фактор х предполагается неслуч. величиной. Если их несколько в модели, то они независимы друг от друга).

  3. Объем наблюдений, необходимый для оценки параметров регрессии, должен быть в 6-10 раз больше кол-ва параметров ур-ия без учета своб. члена а.

  4. Выровненные значения результата y^ лежат на прямой линии.

11. Уравнение регрессии в стандартизированном масштабе.

Относительный показатель силы связи – только для множественной линейной регрессии – стандартизированный коэффициэнт регрессии. Предположим, что была проведена операция стандартизации исходных переменных (x,y).

y-y¯/σy=ty Операция стандартизации по Y

y¯=112,6 txр=xр-xр¯/σxр

σy=57,2

tx1=x1-x1¯/σx1 tx2=x2-x2¯/σx2

Для этих новых стандртизированных переменныхможно построить уравнение регрессии

ty=α+β1tx1+β2tx2...βрtxp+δ

α=0, всегда (свойство стандартизированных переменных)

ty=β1tx1+β2tx2...βрtxp+δ – уравнение в стандартизированной форме или стандартизированном масштабе, а исходное – в натуральной форме.

Параметры β1, β2, βр называются стандартизированными коэффициэнтами регрессии. Их можно найти методом наименьших квадратов – это трудоемко. 2 способ – βi=bi*σxi/σy

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]