
- •1.Предмет оптика. Основные законы. Явление полного внутреннего отражения
- •2.Развитие взглядов на природу света. Корпускулярно-волновой дуализм света.
- •3.Интерференция световых волн. Когерентность. Усл. Max и min при интерференции света.
- •5.Способы получения когерентных источников
- •18.2.1. Опыт Юнга
- •18.2.2. Зеркала Френеля
- •18.2.3. Бипризма Френеля
- •6.Интерференция в тонких пленках. Полосы равного наклона и равной толщины.
- •7. Применение интерференции света. Интерферометры Просветление оптики.
- •8. Принцип Гюйгенса — Френеля. Дифракция Френеля и Фраунгофера Если λ - длина волны, b - размеры препятствия, l - расстояние от препятствия до точки наблюдения, то различают следующие ситуации:
- •9.Метод зон Френеля. Прямолинейноe распространение света
- •1 0. Дифракция Френеля на отверстии и диске
- •11. Дифракция Фраунгофера на одной щели
- •12. Дифракционная решетка
- •13. Поляризация света. Естественный и поляризованный свет. Закон Малюса.
- •14. Двойное лучепреломление
- •15 Призма Николя
- •17.Вращение плоскости поляризации
- •18 Тепловое излучение. Равновесность ти
- •19 Характеристики теплового излучения
- •20.Закон Кирхгофа. Абсолютно черное тело
- •21.Распределение энергии в спектре а.Ч.Т. Законы излучения а.Ч.Т.
- •22.Объяснение распределения излучательной способности по длинам волн (частот)
- •23.Квантовая гипотеза. Формула Планка для теплового излучения
- •26. Масса и импульс фотона. Эффект Комптона
- •27. Давление света. Опыт Лебедева
- •28 Корпускулярно-волновой дуализм
- •29.Открытие электрона. Модель атома томсона
- •30.Опыты резерфорда. Ядерная модель атома и ее недостатки
- •31.Закономерности в атомных спектрах. Спектральные серии излучения атома н. Эмпирическая формула Бальмера
- •32.Постулаты Бора. Опыты Франка и Герца
- •34.Полная энергия электрона в атоме. Вывод формулы Бальмера-Ридберга
- •35,Успехи и недостатки теории Бора. Корпускулярно-волновой дуализм вещества. Формула Де-Бройля
- •37.Волновая функция и ее физический смысл.
- •39.Квантовая механика. Уравнение Шредингера
- •40.Движение свободной частицы
- •41.Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
- •42.Прохождение частицы сквозь потенциальный барьер.
- •43.Линейный гармонический осциллятор в квантовой механике.
- •44.Атом водорода по теории шредингера. Квантовые числа.
- •45. Основное(1s-) состояние электрона в атоме водорода
- •46. Опыт Штерна и Герлаха. Спин электрона.
- •47. Принцип Паули. Распределение электронов в атоме по состояниям
- •48.Периодическая система элементов Менделеева
- •49. Общие сведения о ядрах. Ядерные силы. Модели ядра
- •50.Дефект массы и энергия связи ядра
- •51.Естественная радиоактивность.Закон радиоактивного распада. Правила смещения.
- •52.Методы наблюдения и регистрации радиоактивных излучений и частиц
- •53. Ядерные реакции. Законы сохранения в ядерных реакциях
- •54. Цепная Ядерная Реакция. Ядерный реактор
- •55.Реакция синтеза атомных ядер.
44.Атом водорода по теории шредингера. Квантовые числа.
Состояние электрона в атоме водорода описывается волновой функцией , удовлетворяющей стационарному уравнению Шредингера (217.5), учитывающему значение (223.1):
(223.2)
где m — масса электрона, Е — полная энергия электрона в атоме. Так как поле, в котором движется электрон, является центрально-симметричным, то для решения уравнения (223.2) обычно используют сферическую систему координат: r, , . Не вдаваясь в математическое решение этой задачи, ограничимся рассмотрением важнейших результатов, которые из него следуют, пояснив их физический смысл.
1. Энергия. В теории дифференциальных уравнении доказывается, что уравнения типа (223.2) имеют решения, удовлетворяющие требованиям однозначности, конечности и непрерывности волновой функции , только при собственных значениях энергии
(223.3)
т. е. для дискретного набора отрицательных значений энергии.
2. Квантовые числа. В квантовой механике доказывается, что уравнению Шредингера (223.2) удовлетворяют собственные функции (r, в, <р), определяемые тремя квантовыми числами: главным л, орбитальным / и магнитным /и/.
Главное квантовое число л, согласно (223.3), определяет энергетические уровни электрона в атоме и может принимать любые целочисленные значения начиная с единицы:
Из решения уравнения Шредингера вытекает, что момент импульса (механический орбитальный момент) электрона квантуется, т. е. не может быть произвольным, а принимает дискретные значения, определяемые формулой
(223.4)
где l — орбитальное квантовое число, которое при заданном л принимает значения
(223.5)
т. е. всего n значений, и определяет момент импульса электрона в атоме.
Из решения уравнений Шредингера следует также, что вектор Ll момента импульса электрона может иметь лишь такие ориентации в пространстве, при которых его проекция Llx на направление z внешнего магнитного поля принимает квантованные значения, кратные n:
(223.6)
где ml — магнитное квантовое число, которое при заданном l может принимать значения
(223.7)
т. е. всего 2l+1 значений. Таким образом, магнитное квантовое число ml определяет проекцию момента импульса электрона на заданное направление, причем вектор момента импульса электрона в атоме может иметь в пространстве 2l+1 ориентации.
Наличие квантового числа ml должно привести в магнитном поле к расщеплению уровня с главным квантовым числом n на 2l+1 подуровней. Соответственно в спектре атома должно наблюдаться расщепление спектральных линий. Действительно, расщепление энергетических уровней в магнитном поле было обнаружено в 1896 г. голландским физиком П. Зееманом (1865—1945) и получило название эффекта Зеемана. Расщепление уровней энергии во внешнем электрическом поле, тоже доказанное экспериментально, называется эффектом Штарка.
Хотя
энергия электрона (223.3) и зависит только
от главного квантового числа n,
но каждому собственному значению Еn
(кроме E1)
соответствует несколько собственных
функций nlml,
отличающихся значениями l
и ml.
Следовательно, атом водорода может
иметь одно и то же значение энергии,
находясь в нескольких различных
состояниях. Так как при данном n
орбитальное квантовое число l
может изменяться от 0 до n
- 1 (см. (223.5)), а каждому значению l
соответствует 2l+1
различных значений /и/ (223.7), то число
различных состояний, соответствующих
данному n,
равно
(223.8)
Квантовые числа и их значения являются следствием решений уравнений Шредингера и условий однозначности, непрерывности и конечности, налагаемых на волновую функцию . Кроме того, так как при движении электрона в атоме существенны волновые свойства электрона, то квантовал механика вообще отказывается от классического представления об электронных орбитах. Согласно квантовой механике, каждому энергетическому состоянию соответствует волновая функция, квадрат модуля которой определяет вероятность обнаружения электрона в единице объема.
Вероятность обнаружения электрона в различных частях атома различна. Электрон при своем движении как бы «размазан» по всему объему, образуя электронное облако, плотность (густота) которого характеризует вероятность нахождения электрона в раз личных точках объема атома. Квантовые числа n и l характеризуют размер и форму электронного облака, а квантовое число ml характеризует ориентацию электронного облака в пространстве.
В атомной физике, по аналогии со спектроскопией, состояние электрона, характеризующееся квантовыми числами l = 0, называют s-состоянием (электрон в этом состоянии называют s-электроном), l = 1 — p-состоянием, l = 2 — d-состоянием, l = 3 — f-состоянием и т. д. Значение главного квантового числа указывается перед условным обозначением орбитального квантового числа. Например, электроны в со стояниях с n = 2 и l = 0 и 1 обозначаются соответственно символами 2s и 2р.