
- •1. Предмет и задачи атомной физики, ее место среди других физических наук. Микромир. Масштабы. Экспериментальные данные о строении атома.
- •2. Сериальные закономерности в атомных спектрах, комбинационный принцип Ритца, термы. Классическая модель атома Томсона.
- •3. Элементы классической теории электромагнитного излучения.
- •4. Опыты Резерфорда. Ядерная модель атома. Вывод формулы Резерфорда для рассеяния a-частиц.
- •5. Следствия из опытов Резерфорда. Экспериментальная проверка формулы Резерфорда. Планетарная модель атома Резерфорда. Столкновение частиц. Сечение рассеяния.
- •6. Модель атома водорода по н.Бору. Теория н.Бора для атома водорода. Постулаты Бора.
- •7. Доказательство существования дискретной структуры энергетических уровней атомов.
- •8. Опыты Франка и Герца.
- •9. Спектральные серии водородоподобных атомов. Принцип соответствия. Недостатки теории Бора.
- •10. Частицы и волны. Корпускулярно-волновой дуализм. Волновая функция.
- •11. Гипотеза де Бройля и ее экспериментальное подтверждение на примере дифракции электронов, атомов, нейтронов.
- •12. Свойства волн де Бройля. Фазовая и групповая скорости волн де Бройля.
- •13. Опыты Девиссона – Джермера и Томсона.
- •14. Волновой пакет. Статистический характер связи корпускулярных и волновых свойств.
- •15. Основы квантовой механики. Соотношение неопределенностей Гейзенберга. Принцип суперпозиции. Операторы физических величин. Собственные значения и собственные функции операторов.
- •17. Волновое уравнение Клейна – Гордона.
- •18. Временное и стационарное уравнения Шредингера.
- •19. Основы квантово-механического представления о строении атома.
- •20. Уравнение Шредингера для атома водорода. Физический смысл квантовых чисел. Правила отбора.
- •22. Атомы щелочных металлов. Спектры атомов щелочных металлов. Серии в спектрах щелочных металлов и их происхождение. Закон Мозли.
- •23. Гипотеза Уленбека и Гаудсмита. Спин электрона.
- •24. Принцип Паули и заполнение атомных состояний электронами. Атомные оболочки и подоболочки. Электронная конфигурация. Объяснение периодических свойств и строения системы элементов д.Менделеева
- •25. Магнитные свойства атомов. Орбитальный, механический и магнитный моменты электрона. Магнетон Бора.
- •26. Полный магнитный момент одноэлектронного атома. Гиромагнитное отношение для орбитальных моментов. Энергия атома в магнитном поле.
- •27. Тормозное и характеристическое рентгеновское излучение.
- •27. Серии в спектре характеристического излучения и его особенности. Прохождение рентгеновских лучей через вещество. Детекторы для контроля рентгеновского излучения.
- •28. Применение рентгеновских лучей
10. Частицы и волны. Корпускулярно-волновой дуализм. Волновая функция.
Недостаточность теории Бора сделала необходимым критический пересмотр основ квантовой теории и представлений о природе элементарных частиц (электронов, протонов и т. п.). Возник вопрос о том, насколько исчерпывающим является представление электрона в виде малой механической частицы, характеризуемой определенными координатами и определенной скоростью.
В результате углубления наших знаний о природе света выяснилось, что в оптических явлениях обнаруживается своеобразный дуализм. Наряду с такими свойствами света, которые самым непосредственным образом свидетельствуют о его волновой природе (интерференция, дифракция), имеются и другие свойства, столь же непосредственно обнаруживающие его корпускулярную природу (фотоэффект, явление Комп-тона).
В 1924 г. Луи де-Бройль выдвинул гипотезу, что дуализм не является особенностью одних только оптических явлений, но имеет универсальное значение.
Допуская,
что частицы вещества наряду с
корпускулярными свойствами имеют также
и волновые, де-Бройль перенес на случай
частиц вещества те же правила перехода
от одной картины к другой, какие
справедливы в случае света. Фотон,
обладает энергией
и
импульсом
По идее де-Бройля, движение электрона или какой-либо другой частицы связано с волновым процессом, длина волны которого равна
(*)
– ф- ла де Бройля, а частота
.
11. Гипотеза де Бройля и ее экспериментальное подтверждение на примере дифракции электронов, атомов, нейтронов.
Недостаточность теории Бора сделала необходимым критический пересмотр основ квантовой теории и представлений о природе элементарных частиц (электронов, протонов и т. п.). Возник вопрос о том, насколько исчерпывающим является представление электрона в виде малой механической частицы, характеризуемой определенными координатами и определенной скоростью.
В результате углубления наших знаний о природе света выяснилось, что в оптических явлениях обнаруживается своеобразный дуализм. Наряду с такими свойствами света, которые самым непосредственным образом свидетельствуют о его волновой природе (интерференция, дифракция), имеются и другие свойства, столь же непосредственно обнаруживающие его корпускулярную природу (фотоэффект, явление Комп-тона).
В 1924 г. Луи де-Бройль выдвинул гипотезу, что дуализм не является особенностью одних только оптических явлений, но имеет универсальное значение.
Допуская, что частицы вещества наряду с корпускулярными свойствами имеют также и волновые, де-Бройль перенес на случай частиц вещества те же правила перехода от одной картины к другой, какие справедливы в случае света. Фотон, обладает энергией
и импульсом
По идее де-Бройля, движение электрона или какой-либо другой частицы связано с волновым процессом, длина волны которого равна
(*) – ф- ла де Бройля, а частота
Г
ипотеза
де-Бройля вскоре была блестяще подтверждена
экспериментально. Дэвиссон и Джермер
обнаружили, что пучок электронов,
рассеивающийся от кристаллической
пластинки, дает дифракционную картину.
Томсон и независимо от него Тартаковский
получили дифракционную картину при
прохождении электронного пучка через
металлическую фольгу. Опыт: пучок
электронов, ускоренных разностью
потенциалов порядка нескольких десятков
киловольт, проходил через тонкую
металлическую фольгу и попадал на
фотопластинку. Электрон при ударе о
фотопластинку оказывает на нее такое
же действие, как н фотон. Полученная
таким способом электронограмма золота,
сопоставлена с полученной в аналогичных
условиях рентгенограммой алюминия.
Сходство обеих картин.
Штерн и его сотрудники показали, что дифракционные явления обнаруживаются также у атомных и молекулярных пучков. Во всех перечисленных случаях
дифракционная картина соответствует длине волны, определяемой (*).
Пучок микрочастиц определенной скорости и направления дает дифракционную картину, подобную картине, получаемой от плоской волны.
С
частотой
и волновым числом
связаны
две скорости фазовая
и
групповая
:
-
фазовая скорость волн де-Бройля, это
скорость с которой движутся точки волны
с постоянной фазой.
-
это выражение описывает связь скорости
фазовой и групповой.