Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
реферат по математике.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
137.73 Кб
Скачать

10. Математическое моделирование систем.

Является вторым кардинальным направлением применения М.м. в медицине. Основным понятием, используемым при таком анализе, является математическая модель системы.

Под математической моделью понимается описание какого-либо класса объектов или явлений, выполненное с помощью математической символики. Модель представляет собой компактную запись некоторых существенных сведений о моделируемом явлении, накопленных специалистами в конкретной области (физиологии, биологии, медицине). Иногда можно встретить и устаревшее значение термина «математическое моделирование» как процесса анализа модели на ЭВМ. Чтобы избежать путаницы, во втором случае используют понятие «вычислительный эксперимент».

В математическом моделировании выделяют несколько этапов. Основным является формулирование качественных и количественных закономерностей, описывающих основные черты явления. На этом этапе необходимо широкое привлечение знаний и фактов о структуре и характере функционирования рассматриваемой системы, ее свойствах и проявлениях. Этап завершается созданием качественной (описательной) модели объекта, явления или системы. Этот этап не является специфическим для математического моделирования. Словесное (вербальное) описание (часто с использованием цифрового материала) в ряде случаев является конечным результатом физиологических, психологических, медицинских исследований. Математической моделью описание объекта становится только после того, как оно на последующих этапах переводится на язык математических терминов. 

11. Компартментальное моделирование.

Распространено в медицине и биологии. Согласно определению американского фармаколога и биохимика Шеппарда (С.W. Sheppard, 1948), компартмент — это некоторое количество вещества, выделяемое в биологической системе и обладающее свойством единства, поэтому в процессах транспорта и химических преобразований его можно рассматривать как целое. Например, в качестве особых компартментов рассматривают весь кислород в легких, всю углекислоту в венозной крови, количество введенного препарата в межклеточной жидкости, запас гликогена в печени и т.п. Модели, в которых исследуемая система представляется в виде совокупности компартментов, потоков вещества между ними, а также источников и стоков всех веществ, называются компартментальными.

В компартментальной модели каждому компартменту соответствует своя переменная состояния — количественная характеристика компартмента (концентрация, масса вещества, парциальное давление газа и т.п.). Вещество попадает в систему через источники — естественные (физиологические процессы внешнего дыхания, например источник кислорода) или искусственные (капельница или инъекции); удаляются через стоки — естественные (например, почка) или искусственные (например, аппаратура гемосорбции). Темпы (скорости) потоков вещества из одного компартмента в другой часто предполагаются пропорциональными концентрациям или количествам вещества в компартменте. 

12. Метод черного ящика.

Первым примером упрощенного описания живых систем в медицине и биологии была модель черного ящика, когда все выводы делались только на основе изучения реакций объекта (выходов) на те или иные внешние воздействия (входы) без учета внутренней структуры объекта. Соответствующее описание объекта в понятиях вход — выход оказалось неудовлетворительным, т.к. оно не учитывало изменения его выходных реакций на одно и то же воздействие из-за влияния внутренних изменений в объекте. Поэтому метод черного ящика уступил место методам пространства состояний, в которых описание дается в понятиях вход — состояние — выход. Наиболее естественным описанием динамической системы в рамках теории пространства состояний является компартментальное моделирование, где каждому компартменту соответствует одна переменная состояния. В то же время соотношения вход — выход по-прежнему широко используются для описания существенных свойств биологических объектов.

Выбор тех или иных М.м. при описании и исследовании биологических и медицинских объектов зависит как от индивидуальных знаний специалиста, так и от особенностей решаемых задач. Например, статистические методы дают полное решение задачи во всех случаях, когда исследователя не интересует внутренняя сущность процессов, лежащих в основе изучаемых явлений. Когда знания о структуре системы, механизмах ее функционирования, протекающих в ней процессах и возникающих явлениях могут существенно повлиять на решения исследователя, прибегают к методам математического моделирования систем.