Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
строй. мех. контр..docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
270.82 Кб
Скачать

21. Каноническое уравнение метода перемещений

Идея метода: для того, чтобы основная и заданная система были равноценны в смысле деформаций и усилий, необходимо в основной системе связи повернуть на соответствующие углы и придать им линейные смещения как в заданной системе. При этом в дополнительных связях возникнут реактивные усилия. В связях первого рода – реактивные моменты, а в связях второго рода – реакции. Так как в заданной системе дополнительных связей нет, то можно записать условия равноценности: реактивные усилия в дополнительных связях от их перемещения и действия внешней нагрузки должны быть равны нулю, т.е.

,

обозначим

; и т.д.,

где :

– реактивное усилие в связи 1 от единичного смещения связи Z1=1, т.е. индексы при коэффициентах обозначают

Тогда, система канонических уравнений метода перемещений для систем с двумя неизвестными запишется

Для n-раз кинематически неопределимых систем

(2)

22. Определение коэффициентов и свободных членов канонических уравнений

В основной системе метода перемещений каждый элемент представляет собой статически неопределимую балку

1е – уравнение называется моментным;

2е – уравнение - уравнением сдвига.

4) Для определения коэффициентов канонических уравнений необходимо построить единичные и грузовую эпюры. Эпюры строят в основной системе метода перемещений, последовательно задавая единичные смещения всем дополнительным наложенным связям и от действия внешней нагрузки, используя ранее составленную таблицу.

Коэффициенты моментных уравнений, представляющие собой реактивные моменты в дополнительных связях определяют путем вырезания этих дополнительных связей из соответствующих эпюр. К вырезаемой связи прикладывают реактивные моменты, взятые с эпюр и искомую реакцию связи. Искомую реакцию прикладывают так, как задавалось единичное перемещение рассматриваемой связи и затем, записывая равенство моментов в рассматриваемой связи нулю, определяют искомую реакцию.

Коэффициенты уравнений сдвига, представляющие собой реактивные усилия в связях второго рода, определяют, отсекая от рамы элемент, через который передаются реакции на рассматриваемую связь, вдоль которого расположен дополнительный опорный стержень. К отсеченному элементу прикладывают искомую опорную реакцию (по направлению, как задавали единичное перемещение) и реакции стержней, которые проецируются на ось дополнительного стержня.

Из уравнения, в виде суммы проекций всех сил на направление единичного перемещения, определяем величину искомой реакции.

23. Проверки коэффициентов системы канонических уравнений (выполняют довольно редко):

а) универсальная: сумма всех единичных коэффициентов равна результату умножения суммарной единичной эпюры самой на себя:

Суммарную единичную эпюру получают путем сложения всех единичных эпюр:

б) построчная проверка: сумма всех единичные коэффициентов i-го уравнения равна результату умножения суммарной единичной эпюры на .

в) проверка грузовых коэффициентов: сумма всех грузовых коэффициентов равна, взятому с обратным знаком, результату умножения суммарной единичной эпюры на грузовую, построенную для основной системы метода сил:

.

6) Коэффициенты подставляют в систему канонических уравнений и решают ее, определяя неизвестные Z1, Z2, ...... Zn .