
- •1) Основные законы химии: сохранения массы и энергии, постоянство состава, эквивалентов и Авогадро.
- •2) Закон постоянства состава с современной точки зрения. Соединения постоянного и переменного состава.
- •3) Закон эквивалентов. Эквивалент элементов и соединений.
- •4) Классы неорганических соединений.
- •5) Модель строения атома Резерфорда
- •6) Теория строения атома Бора. Недостатки теории строения.
- •7) Принципы квантов механики: дискретность энергии, корпускулярно-волновой дуализм, принципы неопределенности Гейзенберга.
- •8) Уравнение Шредингера. Смысл волновой функции.
- •9) Квантовые числа. Их значение и сущность.
- •10) Электронного уравнения, подуровня, орбитали.
- •11) Правила и принципы, определяющие последовательность формирования электронных уровня и подуровня.
- •13) Периодический закон д.И.Менделеева. Периодичность в изменении различных свойств элементов(потенциал ионизации, сродство к электрону, атомные радиусы)
- •14) Сходство и различие химических свойств элементов главных и побочных подгрупп в связи с электронным строением атома/
- •15) Химическая связь. Виды химической связи. Энергетические и геометрические характеристики связи.
- •16) Природа химической связи. Энергетические эффекты в процессе образования химической связи.
- •17) Основные положения метода Валентных связей. Обменный и донорно-акцепторный механизма образования ковалентной связи.
- •18) Валентные возможности атомов в основном и в возбужденном состоянии.
- •20) Насыщаемость ковалентной связи. Понятие валентности.
- •21) Полярность ковалентной связи. Теория гибридизации. Виды гибридизации. Примеры.
- •22) Полярность ковалентной связи. Дипольный момент.
- •23) Достоинства и недостатки метода в.С.
- •24) Метод молекулярных орбиталей. Основные понятия.
- •25) Описать методы мо связи в биполярных и много центровых молекулах(b2 o2 BeH2 BeF2).
- •26) Ионная связь предельный случай ковалентно-полярной связи. Свойства ионной связи. Основные виды кристаллических решеток для соединения с ионной связью.
- •27) Металлическая связь. Особенности. Элементы зонной теории для объяснения особенностей металлической связи.
- •28) Межмолекулярное взаимодействие. Ориентационный, индукционный и дисперсионный эффекты.
- •Дисперсионные силы
- •29) Водородная связь.
- •30) Основные типы кристаллических решеток.
- •Простейшие кристаллические решетки. Плотнейшая кубическая упаковка. Плотнейшая гексагональная упаковка
- •31) Законы термохимии. Следствие из законов Гесса.
- •32) Понятие о внутренней энергии системы, энтальпии и энтропии.
- •33) Энергия Гиббса, её взаимодействие с энтальпией и энтропией. Изменение энергии Гиббса в самопроизвольно протекающих процессах.
- •34) Скорость химической реакции. Закон действия масс для гомогенных и гетерогенных реакций. Сущность константы скорости. Порядок и молекулярность реакции.
- •35) Факторы, влияющие на скорость химических реакций.
- •36) Влияние температуры на скорость химический реакций. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса.
- •37) Особенности протекания гетерогенных реакций. Влияние диффузии и степень дискретности вещества.
- •38) Влияние катализатора на скорость химических реакций. Причины влияния катализатора.
- •39) Обратимые процессы. Химическое равновесие. Константа равновесия.
- •40) Влияние различных факторов на смещение равновесия. Принцип Ле Шателье.
- •41) Определение раствора. Физико-химические процессы при образование растворов. Изменения энтальпии и энтропии при растворение.
- •42) Способы выражения концентрации растворов.
- •43) Закон Рауля.
- •44) Осмос. Осматическое давление. Закон Вант-Гоффа.
- •45) Растворы электролитов. Сильные и слабые электролиты. Степень электролитической диссоциации. Изотонический коэффициент.
- •46) Теория элекролитической диссоциации. Физическая теория Аррениуса, химическая Менделеева и современный взгляд на диссоциацию.
- •47) Реакции в растворах электролитов, их направленность. Смещение ионных равновесий.
- •48) Ионное произведение воды. Водородный показатель как химическая характеристика.
- •49) Гетерогенные равновесия в растворах электролитов. Произведение растворимости.
- •50)Гидролиз солей.
- •51) Химическое равновесие на границе металл-раствор. Двойной электрический слой. Скачок потенциала. Водородный электрод сравнения. Ряд стандартных электродных потенциалов.
- •52) Зависимость электродного потенциала от природы веществ, температуры и концентрации раствора. Формула Нэриста.
- •53. 1)Гальванические элементы. 2)Процессы на электродах. 3)эдс гальванического элемента.
- •54. 1)Обратимые источники электрической энергии. 2)Кислотные и щелочные аккумуляторы.
- •55.Топливные элементы.
- •56.1)Электролиз растворов и расплавов. 2)Последовательность электродных процессов. 3)Перенапряжение и поляризация.
- •57.Взаимодействие металлов с кислотами и щелочами.
- •58. Коррозия металлов в растворах солей.
- •59. Применение электролиза в промышленности.
- •60. 1)Электрохимическая коррозия металлов. 2)Основные виды электрохимической коррозии. 3)Процессы на электродах.
- •61. Методы борьбы с коррозией.
- •Выбор одного из методов защиты основывается не только на технических соображениях, но и на экономических расчетах. Наиболее дешевым и распространенным методом являются лакокрасочные покрытия.
60. 1)Электрохимическая коррозия металлов. 2)Основные виды электрохимической коррозии. 3)Процессы на электродах.
Разрушение металла под воздействием возникающих в коррозионной среде гальванических элементов называют электрохимической коррозией. При электрохимической коррозии (наиболее частая форма коррозии) всегда требуется наличие электролита (Конденсат, дождевая вода и т. д.) как, например, при ржавлении железа во влажной атмосфере:
4Fe + 3O2 + 6H2O → 4FeO(OH)•H2O
Электроды образуют либо различные элементы структуры материала, либо два различных соприкасающихся материала. Если в воде растворены ионы солей, электропроводность ее повышается, и скорость процесса увеличивается. Особо сильно действуют хлорид-ионы (содержащиеся, например в морской воде или в воде, образовавшейся при таянии снега зимой, когда дороги посыпают солью), так как они катализируют процесс коррозии. С получающимися в процессе коррозии Fe3+ — ионами ионы хлора образуют растворимые комплексы, что способствует ускорению окисления металла.
При соприкосновении двух металлов с различными окислительно-восстановительными потенциалами и погружении их в раствор электролита, например, дождевой воды с растворенным углекислым газом CO2, образуется гальванический элемент, так называемый, коррозионный элемент. Он представляет собой ни что иное, как замкнутую гальваническую ячейку. В ней происходит медленное растворение металлического материала с отрицательным окислительно-восстановительным потенциалом. Этот вид коррозии особо присущ металлам с высокими отрицательными потенциалами. Так, совсем небольшого количества примеси на поверхности металла с большим редокспотенциалом уже достаточно для возникновения коррозионного элемента. Особо подвержены риску места соприкосновения металлов с различными потенциалами, например сварочные швы или заклепки
Водородная и кислородная коррозия
Если происходит восстановление ионов H30+ или молекул воды H2O, говорят о водородной коррозии или коррозии с водородной деполяризацией. Восстановление ионов происходит по следующей схеме:
2H3O+ + 2e- → 2H2O + H2или2H2O + 2e- → 2OH- + H2
Если водород не выделяется, что часто происходит в нейтральной или сильно щелочной среде, происходит восстановление кислорода и здесь говорят о кислородной коррозии или коррозии с кислородной деполяризацией:
O2 + 2H2O + 4e- → 4OH-
Коррозионный элемент может образовываться не только при соприкосновении двух различных металлов. Коррозионный элемент образуется и в случае одного металла, если, например, структура поверхности неоднородна.
61. Методы борьбы с коррозией.
Широко применяются следующие методы защиты металлических конструкций от коррозии:
Защитные покрытия.
Антикоррозионное легирование металла.
Электрохимическая защита.
Обработка коррозионной среды.
Разработка и производство новых металлических конструкционных материалов повышенной коррозионной устойчивости.