Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛК.02 - Введення в оптим__зац__йн__ економ__ко-...doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
605.18 Кб
Скачать

2.2.2 Задача про «дієту»

Деякий раціон складається з n видів продуктів. Відомі вартість одиниці кожного продукту – , кількість необхідних організму поживних речовин m та потреба в кожній i-ій речовині – . В одиниці j-го продукту міститься поживної речовини i. Необхідно знайти оптимальний раціон , що враховує вимоги забезпечення організму необхідною кількістю поживних речовин.

Критерій оптимальності: мінімальна вартість раціону.

Позначимо через x1, x2, …, xn – кількість відповідного j-го виду продукту . Система обмежень описуватиме забезпечення в раціоні кожної поживної речовини не нижче зазначеного рівня . Економіко-математична модель матиме вигляд:

за умов:

Аналогічно як у виробничій задачі, економіко-математична модель задачі про «дієту» (або про суміш) також може описувати інші економічні процеси. По суті цей тип задач дає змогу знаходити оптимальне поєднання деякого набору компонент в одне ціле, причому таке поєднання має задовольняти певні умови.

Приклад 2.4. Стандартом передбачається, що октанове число бензину А-76 має бути не нижчим 76, а вміст сір­ки — не більшим, ніж 0,3%. Для виготовлення такого бензину на заводі використовуються чотири компоненти. Дані про обсяги запасів компонентів, які змішуються, їх вартості, октанові числа та вміст сірки наведені в таблиці 2.2:

Таблиця 2.2 – Техніко-економічні показники компонент бензину

Показник

Компонента бензину

№ 1

№ 2

№ 3

№4

Октанове число

68

72

80

90

Вміст сірки, %

0,35

0,35

0,30

0,20

Наявний обсяг, т

700

600

500

300

Вартість, грош. од./т

40

45

60

90

Необхідно визначити, скільки тонн кожного компонента потрібно використати для того, щоб отримати 1000 т бензину А-76 з мінімальною собівартістю.

Побудова економіко-математичної моделі.

Позначимо через хj кількість j-го компонента в суміші (т), j=1,2,3,4.

Перше обмеження забезпечує потрібне значення октанового числа в суміші:

.

Вміст сірки в суміші має не перевищувати 0,3 %:

,

а загальна маса утвореної суміші має дорівнювати 1000 т:

.

Використання кожного компонента має не перевищувати його наявного обсягу:

Собівартість суміші визначається за формулою:

.

Загалом, економіко-математична модель задачі має вигляд:

за умов:

.

Приклад 2.5. Учасник експедиції складає рюкзак, і йому необхідно розв’язати питання про те, які взяти продукти. У розпорядженні є м’ясо, борошно, сухе молоко, цукор. У рюкзаку залишилось для продуктів лише 45 дм3 об’єму, до того ж необхідно, щоб загальна маса продуктів не перевищувала 35 кг. Лікар експедиції рекомендував, щоб м’яса (за масою) було більше, ніж борошна принаймні удвічі, борошна не менше, ніж молока, а молока хоча б у вісім разів більше, ніж цукру. Скільки і яких продуктів потрібно покласти в рюкзак, щоб сумарна калорійність продуктів була найбільшою? Характеристики продуктів наведені в табл.2.2.

Таблиця 2.3 – Характеристики продуктів

Показники

Продукт

м’ясо

борошно

молоко

цукор

Об’єм (дм3/кг)

1

1,5

2

1

Калорійність (ккал/кг)

1500

5000

5000

4000

Побудова економіко-математичної моделі.

Позначимо через х1, х2, х3, х4 масу (в кг) м’яса, борошна, молока і цукру відповідно.

Сумарна маса продуктів має не перевищувати 35 кг:

,

а об’єм, який вони мають займати, – не більше 45 дм3:

.

Крім того, мають виконуватися співвідношення стосовно пропорцій за масою продуктів:

а) м’яса принаймні удвічі більше, ніж борошна, отже:

;

б) борошна не менше, ніж молока: ;

в) молока хоча б у вісім разів більше, ніж цукру: .

Калорійність всього набору продуктів можна визначити так:

.

Отже, економіко-математична модель задачі має вигляд:

за умов:

.