Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
31 ДУ.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
350.72 Кб
Скачать

11

Введение.

Мы начинаем изучение одного из основных разделов высшей математики – теории дифференциальных уравнений. Эта теория возникла в конце 17 века одновременно с дифференциальным и интегральным исчислением под влиянием потребностей механики, физики и развивалась в тесной связи с этими науками, а также с техникой. Простейшие дифференциальные уравнения встречались уже в работах И. Ньютона и Г. Лейбница (последний предложил термин «дифференциальные уравнения»). Задача неопределенного интегрирования, т.е. отыскания неизвестной функции по заданной производной – это простейшее дифференциальное уравнение. В трудах Д. Бернулли, Даламбера, Эйлера теория дифференциальных уравнений оформилась в самостоятельную научную дисциплину. Важность этой теории вытекает из того, что основные законы природы, математические закономерности различных процессов выражаются в форме дифференциальных уравнений, а расчет течения этих процессов сводится к отысканию решений этих дифференциальных уравнений. Так обстоит дело в механике (вторая основная задача механики), так обстоит дело и в метеорологии, в теории электроцепей, электродинамике и т.д. В теме «Дифференциальные уравнения» мы рассмотрим основные понятия теории и методы решения простейших дифференциальных уравнений.

  1. Задачи физического характера, приводящие к дифференциальным уравнениям.

Рассмотрим некоторые задачи механики и физики, приводящие к решению обыкновенных дифференциальных уравнений.

Задача о свободном падении тела.

Пусть с некоторой высоты H сброшено тела массы m. Требуется установить, за какое время тело достигнет земной поверхности.

Из условия ясно, что тело движется под действием силы тяжести . Направим ось s отсчета перемещения тела вертикально вниз так, чтобы ее начало совпадало с начальным положением тела. Согласно второму закону Ньютона, имеем

, (1)

где m – масса тела, - ускорение движущегося тела (вторая производная от перемещения по времени), g – ускорение свободного падения. Уравнение (1) является дифференциальным уравнением второго порядка. Сокращая на m, получим . Интегрируя это уравнение, получим

(2)

Если в начальный момент времени t=0 скорость и перемещение были соответственно равны s0 и v0 , то из уравнений (2) получим v0 =C1 , s0=C2 . Тогда закон движения тела примет вид

(3)

Подставляя теперь в равенство (3) значения s=H, v0 =0, s0 =0, получим формулу для определения времени свободного падения тела: .

Задача о переходном процессе в электрической цепи.

В электрической цепи, содержащей активное сопротивление R, индуктивность L и электродвижущую силу E, в момент времени t=0 замыкается рубильник P. Найти закон, по которому изменяется ток i в данной цепи.

Согласно закону Ома для участка цепи, падение напряжения на активном сопротивлении составит R. При замыкании цепи в катушке L возникает э.д.с. самоиндукции, направленная противоположно току i и пропорциональная производной , причем коэффициент пропорциональности равен L. По второму закону Кирхгофа для RL- цепи при t>0 имеем , откуда

(4)

Уравнение (4) является линейным дифференциальным уравнением первого порядка с постоянными коэффициентами. Непосредственной подстановкой можно проверить, что общим решением уравнения будет функция

(5)

где С – произвольная постоянная. Учитывая, что при t=0 в цепи нет электрического тока (i=0), имеем откуда . Подставляя значение C в равенство (5), получим закон изменения тока в RL – цепи

(6)

В формуле (6) член убывает с возрастанием t. Таким образом, установившееся значение тока по истечении достаточно большого промежутка времени с момента замыкания RL– цепи определяется величиной . Заметим, что вычисление токов и напряжений в электрических цепях с помощью дифференциальных уравнений является классическим методом расчета цепей в электротехнике.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]