Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shp_fizika_medits.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
252.01 Кб
Скачать

7. Медицинская вискозиметрия. Принцип работы мед вискозиметра.

Вискозиметрия-совокупность методов измерения вязкости, с помощью прибора вискозиметра.

Принцип работы медицинского вискозиметра : скорость продвижения жидкостей в капиллярах с одинаковыми сечениями при равной t0 и р зависит от вязкости этих жидкостей.

Мед вискозиметр состоит из 2х одинаковых градуированных капилляров А1 и А2 В капилляр А1 набирают определенный V дистиллированной воды, перекрывают кран Б.Это позволяет набрать исследуемую жидкость в капилляр А2, не изменяя уровень воды. Если теперь открыть кран б и создать разрежение в вискозиметре, то перемещение l жидкостей за одно и то же время будет пропорциональным их вязкости.

ηx0 =l0/lx ηx= η0 l0/lx

8.Явление пов натяжения. Капиллярность. Причины газовой и жировой эмболии сосудов.

Пов натяжение жидкости заключается в стремлении вещества уменьшить избыток своей потенциальной энергии на границе раздела с др фазой (пов энергию). На пов-тях раздела жид-ти и ее насыщ пара, двух несмешиваемых жид-й, жид-ти и тв тела возникает сила, обусловленная различным межмолекулярным взщаимодействием граничащих сред.Силы пов натяжения направлены по касательной к поверхности жидкости, перпендикулярно к участку контура на котор они действуют и пропорциональныдлине этого участка. Коэф-т пов натяжения α=F/l=A/S

Капиллярность-физ явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие – в случае смачивания.

Газовая и жировая эмболия

Эмболия-явление закупорки сосуда пузырьком воздуха(каплей жира),чреватое лишением кровоснабжения какого-либо сосуда или органа.

Газовая эмболия возникает при:

-порезах крупных вен(там большое давление) и происходит закупорка.

-при подключении капельницы в крупную вену (как правило, подключичную) при отсутствии жидкости в сосуде и подключенному к нему катетору.

При течении пузырька с кровью,передняя часть пузырька вытягивается,задняя сплющивается.В задней части Р1 меньше,чем Р2.Добавочное давление Р приводит к закупорке сосуда.

При жировой эмболии процессы теже самые.Она возникает при переломах костей,кода капельки жира проникают в сосуды.Затем после этого возникает тромбоэмболия(возникновение тромба в сосуде)

9.Тоны Короткова. Физические основы применения неинвазивного метода Короткова для измерения систолического и диастолического давлений.

Метод Короткова – бескровный метод измерения систолического и диастолического давления крови в плечевой артерии.Тоны Короткова - звуки, которые слышны с помощью фонендоскопа, помещенного на лучевой артерии, при нагнетании воздуха в манжетку и его постепенном выпускании. Систолическое (верхнее) артериальное давление — это уровень давления крови в момент максимального сокращения сердца. Диастолическое (нижнее) артериальное давление — это уровень давления крови в момент максимального расслабления сердца. Метод Короткова предусматривает для измерения артериального давления очень простой тонометр, состоящий из механического манометра, манжеты с грушей и фонендоскопа. Метод основан на полном пережатии манжетой плечевой артерии и выслушивании тонов, возникающих при медленном выпускании воздуха из манжеты.

Если мускулатура расслаблена, то давление воздуха внутри манжеты, состоящей из эластичных стенок, приблизительно равно давлению в мягких тканях, соприкасающихся с манжетой – основная идея бескровного метода Короткова.Сначала избыточное над атмосферным давление воздуха в манжете равно нулю, манжета не сжимает руку и артерию. По мере накачивания воздуха в манжету последняя сдавливает плечевую артерию и прекращает ток крови. Выпуская воздух, уменьшают давление в манжете и в мягких тканях, с которыми она соприкасается. Когда давление станет равным систолическому, кровь будет способна пробиться через сдавленную артерию – возникает турбулентное течение. Этот процесс сопровождают характерные тоны и шумы (тоны Короткова). Продолжая уменьшать давление в манжете, можно восстановить ламинарное течение крови – резкое ослабление прослушиваемых тонов – диастолическое давление.

10. Сочленения и рычаги в опорно-двигательном аппарате человека; механическая работа человека эргометрия.*Опорно-двигательный аппарат человека состоит из сочлененных между собой костей скелета, к которым в определенных точках прикрепляются мышцы. Кости скелета действуют как рычаги, которые имеют точку опоры в сочленениях и приводятся в движение силой тяги, возникающей при сокращении мышц. Рычагом называется твердое тело, которое может вращаться около неподвижной оси. Различают три вида рычагов:

1) Когда точка опоры лежит между точками приложения действующей силы F и силы сопротивления R. Условие равновесия рычага Fа = Rb.

Пример: череп, рассматриваемый в сагиттальной плоскости. Ось вращения проходит через сочленение черепа с первым позвонком. R - сила тяжести головы, приложенная в центре тяжести. F - сила тяги мышц и связок, прикрепленных к затылочной кости.

2) Когда точка опоры лежит за точкой приложения силы сопротивления R, а сила F приложена на конце рычага.Условие равновесия рычага Fa = Rb, но а > b, следовательно, F > R, то есть рычаг дает выигрыш в силе, но проигрыш в перемещении и называется рычагом силы.

Пример: действие свода стопы при подъёме на полупальцы. Опорой служат головки плюсневых костей. R - сила тяжести всего тела, приложена к таранной кости. F - мышечная сила, осуществляющая подъём тела, передается через ахиллово сухожилие и приложена к выступу пяточной кости.

3) Когда сила F приложена ближе к точке опоры, чем сила R.Условие равновесия рычага . Fa=Rb,но а < b, следовательно, F > R, то есть рычаг дает проигрыш в силе, но выигрыш в перемещении и называется рычагом скорости.

Пример: кости предплечья. Точка опоры находится в локтевом суставе. F - сила мышц, сгибающих предплечье, R - сила тяжести поддерживаемого груза, приложенная обычно к кисти, а также сила тяжести самого предплечья.

Кости опорно-двигательного аппарата соединяются между собой в сочленениях или суставах.

Основной механической характеристикой сустава является число степеней свободы.

Различают суставы с 1, 2 и 3 степенями свободы.

Примеры: плече-локтевой сустав - одна степень свободы;

лучезапястный сустав - две степени свободы;

тазобедренный сустав, лопаточно-плечевое сочленение - три степени свободы (сгибание и разгибание, приведение и отведение, вращение).

*Человек с помощью мышц совершает механическую работу, которая обусловлена силой мышц и развиваемой ими мощностью. Средняя мощность, развиваемая человеком, не занятым специально физическим трудом, весьма невелика и, например, при ходьбе по ровной местности составляет 100-200 вт в зависимости от скорости.

Усталость свидетельствует о том, что мышцы совершают работу, хотя перемещения нет и работа равна нулю. Такую работу называют статической работой мышц.

Исследование работоспособности мышц называется эргометрией, а соответствующие приборы - эргометрами.

Пример: тормозной велосипед (велоэргометр). F - сила трения между лентой и ободом колеса, измеряемая динамометром. Вся работа испытуемого затрачивается на преодоление силы трения.

Тогда A = Fтр l = Fтр 2 r - за один оборот,

A = n Fтр 2 r - за n оборотов - средняя мощность.

Когда мышцы совершают работу, в них освобождается химическая энергия, накопленная в процессе метаболизма; она частично превращается в механическую работу, а частично теряется в виде тепла.

11. Биологические мембраны, их строение и физические свойства.

Основой существования всех живых организмов является клетка. Каждую клетку окружает мембрана, через которую происходит постоянный перенос вещества. Благодаря этому поддерживает метабализм, биоэнергетические процессы, генерируются биопотенциалы-нервные импульсы, за счет которых происходит взаимодействие клеток организма.толщина неск нм. Функции:

Механическая – за счет которой обеспечивается прочность клетки, автономномность.

Матричная – специфичное расположение ферментов-белков,гликопротеинов,гликолипидов.

Барьерная – Регулируемый обмен между клеткой и внешней средой. Строение: Схема строения биологической мембраны клетки: 1 — углеводные фрагменты гликопротеидов; 2 — липидный бислой; 3 — интегральный белок; 4 — «головки» фосфолипидов; 5 — периферический белок; 6 — холестерин; 7 — жирнокислотные «хвосты» фосфолипидов.

Строение фосфолипида:

Состоит из полярной головки, которая является диполем и неполярного обычного хвоста.

Головка-гидрофильна, соприкасается с водой

Хвост-гидрофобен,не соприкасается с водой

Такое свойство биполярности называется –амфифильность, за счет этого свойства молекулы способны к самосборке

Физические свойства:

  1. Вопрос о строении с точки зрения физики:

Вопрос о строении был изучен с помощью коэффицента поверхностного натяжения:

Для границы раздела белок-вода q1=10 в -4 Н/м, для границы липид вода q2=10 в -2 Н/м

Значение коэффицента для биомембран ближе к первому значению

  1. Фазовые переходы в биомембранах:

Фосфолипидная часть биомембраны может испытывать фазовые переходы-

При понижении температуры фосфолипиды переходят из жидко-крист. состояния в твердо-крист( гель-состояние)

Для жидко-кристалического состояния характерно наличие изогнутых хвостов. Полагают, что при таком состоянии осуществляется перенос полярных молекул через мембрану.

В твердо-кристалическом состоянии гидрофобные хвосты полностью вытянуты

При фазовых переходах могут образовываться каналы. Фазовые переходы могут быть вызваны не только температурой, но и химическими веществами.

  1. Мембраны-это нечто застывшее, статическое. Изменение механического состояния мембраны определяется механическими характеристиками: подвижностью фосфолипидных молекул, их микровязкость

Для жидко-кристалического состояния микровязкость составляет 30-100 мПа*с (в 30-100 раз больше, чем у воды.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]