
- •2. Закон Вебера-Фехнера .
- •3. Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине.
- •7. Медицинская вискозиметрия. Принцип работы мед вискозиметра.
- •9.Тоны Короткова. Физические основы применения неинвазивного метода Короткова для измерения систолического и диастолического давлений.
- •12.Перенос нейтральных частиц через мембраны. Уравнение простой диффузии.
- •13.Перенос ионов через мембраны. Уравнение электродиффузии. Уравнение Нернста-Планка.
- •14Виды пассивного транспорта нейтральных и заряженных частиц через мембраны.
- •15.Понятие о потенциале покоя биологической мембраны. Равновесный потенциал Нернста. Стационарный потенциал гхк.
- •16. Электрический вектор сердца. Представление о дипольном эквивалентном электрическом генераторе сердца, головного мозга и мышц. Электрические биопотенциалы, их особенности.
- •18. Электропроводимость биологических тканей для постоянного и переменного токов. Ионная проводимость.
- •20. Воздействие на живые ткани магнитным полем увч – частота.
- •21. Воздействие на живые ткани электромагнитным полем свч-частот.
- •22.Воздействие ультрафиолетового излучения на организм человека. Понятие о фотобиомодификации. Низкоинтенсивный свет.
- •23. Воздействие инфракрасного излучения на организм человека. Особенности биологического действия лазерного света.
- •25.Дифракция света на живых клетках. Измерение размеров эритроцитов методом дифракции света.
- •26. Тормозное рентгеновское излучение. Строение, принцип работы и характеристики рентгеновской трубки.
- •27.Понятие о контрасте и контрастном рентгеновском изображении. Защита от рентгеновского излучения. Технический принцип рентгенографии и рентгеноскопии.
- •28. Биофизические основы действия ионизирующих излучений на организм. Радиолиз воды.
1Звук - механические колебания и волны, распространяющиеся в упругих средах в виде продольных волн с частотой от 16 Гц до 20000 Гц и воспринимаемые человеческим ухом.
Субъективные характеристики звука:
Тембр – «окраска» звука и определяется его гармоническим спектром. Различные акустические спектры соответствуют разному тембру, даже в том случае, когда основной тон у них одинаков. Тембр – качественная характеристика звука.
Высота тона - субъективная оценка звукового сигнала, зависящая от частоты звука и его интенсивности. Чем больше частота, главным образом основного тона, тем ниже высота воспринимаемого звука.
Громкость – также субъективная оценка, характеризующая уровень интенсивности.
2. Закон Вебера-Фехнера .
Громкость
может быть оценена колич путем, те
сравнение слух ощущ от 2 источников. В
основе шкалы уровней громкости лежит
важный психофиз закон Вебера-Фехнера:
«Если
увел раздраж в геометр прогрессии, то
ощущ этого раздр увел в арифм прогрессии».
Применительно к звуку это означает,
что если интенс звука прин ряд послед
значений аI0,а²I0,
а³I0
и тд, то соовт им ощущ громкости звука,
будет Е0,
2Е0,
3Е0
и тд. Матем запись закона В-Ф: Eб=klgI/
I0.
В общем случае: Еф=10klgI/
I0.
Условились считать, что на частоте 1
кГц шкалы интенс и громк совпадают и
k=1.
Для отл от шкалы интенс в шлаке громкости
дБ назыв фонами. Громкость на др частотах
можно изм сравнивая исслед звук с
частотой 1кГц. Для этого с пом звук
генератора (эл прибор генерирующий
частоты колеб в Зв диапозоне), созд
ν=1кГц. Затем изм интенс до тех пор, пока
не возн слух ощущение ананлог ощущу
громкости исслед звука. У звука частотой
1кГц в дБ дБ, измеряемая по прибору,
равна громкости этого звука в фонах.
Кривые равной громкости. Зависимость громкости от частоты колебаний в системк звуковых измерений определяется на основании экспериментальных данных при помощи графиков, которые назыв К-р-г. Эти кривые характеризуют зависимость уровня интенсивности L от частоты υ звука при постоянном уровне громкости. Кривые называют изофонами. Нижняя изофона соответствует порогу слышимости (Е=0 фон), верхняя показывает предел чувствительности уха, когда слуховое ощущение переходит в ощущение боли (Е=120 фон)
3. Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине.
М
етод
измерения остроты слуха называют
аудиометрией.
При аудиометрии на аудиометре определяют
порог слухового ощущения на разных
частотах. Полученная кривая называется
аудиограммой.
Аудиограмма - это график, отображающий состояние слуха человека.
По горизонтальной оси откладываются частоты (от 125 до 8000 Гц), а по вертикальной – пороги слышимости на соответствующих частотах, т.е. минимальные уровни звукового давления сигнала, при которых пациент слышит звук. При построении аудиограммы значения этих порогов измеряются специальным прибором – аудиометром.
По характеру данного графика можно судить о нарушениях органа слуха и методах и их коррекции.
Что такое кривая порога слышимости?
Кривой порога слышимости называют график зависимости (минимальной) интенсивности звука, способного создать слуховое ощущение от частоты этого звука. Этот график приведен на рисунке в пункте 11. Как и кривые одинаковой громкости они имеют провал - минимум на частотах 1000 - 4000 Гц, что указывает на то, что наше ухо наиболее чувствительно именно к этим частотам.
4. Инфразвук, диапазон частот; эффекты и механизмы воздействия на организм человека Инфразвук – акустические волны с частотой колебаний меньше 16Гц. Одним из самых важных свойств инфразвука является его способность распространяться на большие расстояния в различных средах: в воздухе, воде, земной коре.
Тк длина волны инфразвука больше, чем у слышимых звуков то инфразвук волны лучше дифрагируют и проникают в помещение, обходя преграды. Воздействие инфразвука происходит не только через слуховой анализатор, но и через механорецепторы кожи. Возникающие нервные импульсы нарушают согласованную работу различных отделов нервной системы, что может проявляться головокружением, болями в животе, тошнотой, затрудненным дыханием, чувством страха, при более интенсивном и продолжительном воздействии - кашлем, удушьем, нарушением психики. Поражающее действие инфразвука зависит от его силы и интенсивности. Инфразвуковые колебания небольшой интенсивности вызывают тошноту и звон в ушах, уменьшают остроту зрения. Нарушения, связанные с расстройствами зрительного аппарата проявляются отличием друг от друга картин, создаваемых левым и правым глазом, начинает «ломаться» горизонт. При длительном воздействии возникают проблемы с ориентацией в пространстве и в редких случаях слепота. Колебания средней интенсивности могут стать причиной расстройства пищеварения, сердечнососудистой, дыхательной систем, нарушения психики с самыми неожиданными последствиями. Инфразвук высокой интенсивности (частотой 7 Гц и выше), влекущий за собой резонанс , приводит к нарушению работы практически всех внутренних органов, к кровотечению из ушей и носа. Также возможен смертельный исход из-за остановки сердца, или разрыва кровеносных сосудов. Снижение уровня интенсивности инфразвуков в жилых, производственных и транспортных помещениях – одна из задач гигиены.
5.Ультразвук.
Ультразвуком
называют продольные механические
волны с частотами колебаний выше 20
КГц. В каждой среде скорость
распространения, как звука, так и
ультразвука – одинакова. Длина
ультразвуковых волн в воздухе меньше
чем 17 мМ
Источниками ультразвука являются специальные электромеханические излучатели. Один тип излучателей работают на основе явления магнитострикции, когда в переменном магнитном поле изменяются размеры некоторых тел ( например, никелевого стержня). Такие излучатели позволяют получить колебания с частотами от 20 до 80 КГц.
Второй тип излучателей работает на основе пьезоэффекта, когда в переменном электрическом поле изменяются размеры некоторых тел. Для этого типа излучателей можно получать более высокочастотные колебания – до 500 МГц.
Особенности ультразвука.
В каждой среде скорость распространения звука и ультразвука – одинакова. Наиболее важной особенностью ультразвука является узость ультразвукового пучка, что позволяет воздействовать на какие-либо объекты локально. В неоднородных средах с мелкими включениями частиц, когда размеры включений примерно равны, но больше длины волны (L=λ) имеет место явление дифракции. Если размеры включений много больше длины волны имеет место прямолинейность распространения ультразвука. В этом случае можно получать ультразвуковые тени от таких включений, что используется при разл видах диагностики технической и медицинской. Важным теоретическим моментом при использовании ультразвука является прохождение ультразвука из одной среды в другую.
Частота при этом не изменяется. Скорость и длина волны при этом могут изменяться.
Проникновение УВ в другую среду характеризуется коэффициентом проникновения. Он определяется как отношение интенсивности волны попавшей во вторую среду к интенсивности, попавшей волны:
Этот коэффициент зависит от соотношения акустического импеданса двух сред.
Акустическим импедансом называют произведение плотности среды на скорость распространения волн в данной среде:
Коэф. Проникновения наибольший- близкий к 1, если акустический импеданс двух сред примерно равны.
Если импеданс второй среды больше, чем первой, то коэф. проникновения ничтожно мал. В однородных средах ультразвук поглощается по закону показательной функции.
Воздействие УВ на организм.
Три вида действия УВ:
- механическое
- тепловое
- химическое
Все три вида воздействия УВ на организм связано с явлением кавитации- это кратковременные возникновения микро полостей в местах разряжения волны.
УВ ускоряет протекание процессов диффузии и растворения, оказывает влияние на скорость химических реакций. УВ большой мощности вызывает гибель вирусов и бактерий. При малой мощности увеличивается проницаемость клеточных мембран и активизируются процессы обмена в тканях. Способность УВ волн оказывать механическое и тепловое действие на ткани лежит в основе УВ физиотерапии.
Локационные методы:
- эхоэнцефалография( определение опухолей и отека головного мозга)
-ультразвуковая кардиография ( измерение размеров сердца в динамике)
-ультразвуковая локация ( в офтальмологии).
Теменной метод основан на регистрации интенсивности УВ , прошедшего через исследуемый объект. В хирургии для резки костной ткани применяют УВ скальпель.
6. 6.Особенности тока крови по крупным сосудам, средним и мелким сосудам, капиллярам, ток крови при сужении сосуда, звуковые эффекты.
Движение крови по сосудам обусловлено градиентом давления в артериях и венах. Оно подчинено законам гидродинамики и определяется двумя силами: давлением, влияющим на движение крови, и сопротивлением, которое она испытывает при трении о стенки сосудов. Силой, создающей давление в сосудистой системе, является работа сердца, его сократительная способность. Сопротивление кровотоку зависит прежде всего от диаметра сосудов, их длины и тонуса, а также от от объема циркулирующей крови и ее вязкости. При каждом сокращении сердца кровь выбрасывается в артерии под большим давлением. Вследствие сопротивления кровеносных сосудов ее передвижению в них создается давление, которое называют кровяным давлением. Величина его неодинакова в разных отделах сосудистого русла. Наибольшее давление в аорте и крупных артериях. В мелких артериях, артериолах, капиллярах и венах оно постепенно снижается; в полых венах давление крови меньше атмосферного. На протяжении сердечного цикла давление в артериях неодинаково: оно выше в момент систолы и ниже при диастоле, Наибольшее давление называют систолическим (максимальным), наименьшее — диастолическим (минимальным). Колебания кровяного давления при систоле и диастоле сердца происходят лишь в аорте и артериях; в артериолах и венах давление крови постоянно на всем протяжении сердечного цикла. Среднее артериальное давление представляет собой ту величину давления, которое могло бы обеспечить течение крови в артериях без колебаний давления при систоле и диастоле. Это давление выражает энергию непрерывного течения крови, показатели которого близки к уровню диастолического давления. Когда давление станет равным систолическому, кровь будет способна пробиться через сдавленную артерию – возникнет турбулентное течение.
---Характерные тоны и шумы, сопровождающие этот процесс, прослушивает врач при изменении давления, располагая фонендоскоп на артерии дистальнее манжеты ( на большом расстоянии от сердца). Продолжая уменьшать давление в манжете, можно восстановить ламинарное течение крови, что заметно по резкому ослаблению прослушиваемых тонов