- •Спецглавы теории автоматического управления. Теория цифровых и импульсных автоматических систем
- •Оглавление
- •1 Импульсные системы автоматического управления
- •1.1 Основные понятия импульсных систем
- •1.2 Примеры импульсных систем
- •1. Множительное устройство с амплитудно-широтно-импульсной модуляцией
- •2. Импульсный фильтр
- •1.3 Решетчатые функции
- •1.4 Разности решетчатых функций и разностные уравнения
- •1.5 Дискретное (d) преобразование Лапласа.
- •1.6 Основные теоремы, правила d-преобразования
- •1.7 Z преобразование
- •1.8 Уравнения и пф разомкнутых импульсных систем
- •1.9 Уравнение и пф замкнутых импульсных систем
- •1.10 Частотные характеристики импульсных систем
- •1.11 Построение лчх
- •1.12 Приближенный метод
- •Особенности построения лчх колебательных звеньев
- •1.13 Правила преобразования структурных схем в ис
- •1.14 Устойчивость дискретных систем
- •1.14.2 Аналог критерия Михайлова
- •1.14.3 Аналог критерия Найквиста
- •2 Цифровые системы автоматического управления
- •2.1 Основные понятия цифровых сау
- •2.2 Пример построения цифровых сау цсау электропривода.
- •2.3 Устройства выборки и хранения (увх)
- •2.4 Цифро-аналоговое преобразование (цап)
- •2.5 Аналого-цифровое преобразование (ацп)
- •2.6 Цифровые сау с экстраполятором нулевого порядка
- •2.7 Построение лчх в цифровых системах
- •2.11 Последовательная коррекция с помощью аналоговых регуляторов
- •2.11.1 Аппроксимация операции выборки и хранения звеном чистого запаздывания.
- •2.11.2 Синтез с помощью w-преобразования
- •2.11.3 Коррекция с помощью аналоговых регуляторов в цепи обратной связи
- •2.12 Синтез цифровых регуляторов
- •2.12.1 Последовательный импульсный фильтр
- •2.12.2 Импульсный фильтр в цепи ос
- •2.12.3 Комбинированный импульсный фильтр
- •2.13 Реализация цифровых регуляторов на эвм
- •Непосредственное программирование.
- •Последовательное программирование.
- •Параллельное программирование.
- •2.13.1 Непосредственное программирование
- •2.13.2 Последовательное программирование
- •2.13.3 Параллельное программирование
- •1. Непосредственное программирование.
- •2. Последовательное программирование
- •3. Параллельное программирование.
- •2.13.4 Сравнительный анализ методов программирования
- •2.14 О точности задания коэффициентов цифрового корректирующего устройства
- •2.15 Реализация на микроЭвм элементов и устройств в системе управления
- •2.15.1 Дифференциальные цифровые преобразователи
- •2.15.2 Алгоритмы дифференцирования
- •2.15.3 Методические ошибки дифференцирования
- •2.15.4 Влияние шумов квантования
- •2.15.5 Цифровые интеграторы
- •2.16 Цифровые фильтры
- •2.16.1 Нерекурсивные фильтры
- •2.16.2 Рекурсивные фильтры
2.2 Пример построения цифровых сау цсау электропривода.
Рассмотрим двухкоординатную ЦСАУ следящих электроприводов с управляемыми двигателями постоянного или переменного тока.
Подобная структура может быть принята для приводов антенн радиолокационных станций, приводов артиллерийских зенитных установок и т.п. В частности, при использовании такой системы в качестве приводов артиллерийских зенитных установок (АЗУ) управляющая ЦВМ должна обеспечить работу системы в режимах автоматического слежения за целью.
При этом ЦВМ выдаёт два сигнала в цифровом коде, соответствующих необходимым углам поворота платформы АЗУ по азимуту (код А) и возвышению (код В). Платформа АЗУ приводится в движение через редуктор (Р) двумя исполнительными двигателями, один из которых (Ма) перемещает платформу в азимутальной плоскости, а другой (Мв) - в плоскости возвышения (рисунок 2.2.1).
Р – редуктор
Рисунок 2.2.1 – двухкоординатная ЦСАУ следящих электроприводов
Каждый из двигателей одновременно воздействует на соответствующий цифровой датчик: датчик азимута (Да) и датчик возвышения (Дв). Сравнение кодов заданного и истинного значений обоих углов поворота платформы, а также выработка управляющих импульсов и сигналов коррекции производится в вычислительных устройствах ВУа и ВУв. Сигналы с выходов ВУа и ВУв поступают на усилительно-преобразовательные устройства УПУа и УПУв, управляющие исполнительными двигателями Ма и Мв.
Следящие система по углу азимута и возвышения обычно выполняются в виде автономных цифровых электроприводов.
Рассмотрим структуру такого привода с асинхронным однофазным двигателем и несимметричным управлением (рисунок 2.2.2).
ФСУ – фазосдвигающее устройство, ВУ – вычислительное устройство, УМ – усилитель мощности, ИМ – исполнительный механизм, ДЧ – делитель частоты, М – мотор,
Г – генератор прямоугольных импульсов, УПУ – усилительно-преобразующее устройство
Рисунок 2.2.2 – цифровой электропривод с асинхронным однофазным двигателем и несимметричным управлением.
УПУ и УМ выполнены на транзисторах и работают в ключевых режимах, что позволяет уменьшить массу и габариты УПУ и УМ.
В ВУ сравниваются коды задающего сигнала r и код сигнала обратной связи y. Кроме сравнения кодов ВУ может решать задачи коррекции динамических свойств привода. Отличительной особенностью цифровых приводов является исключение фазосдвигающих конденсаторов, обеспечение относительно стабильного сдвига магнитных потоков в ОВ и ОУ на 90, исключение источника питания переменного напряжения частоты f2, при этом требуется только источник постоянного тока.
При симметричном управлении в структуру вводится еще УПУ и дополнительная связь (рисунок 2.2.3).
Рисунок 2.2.3 –цифровой электропривод с асинхронным однофазным двигателем и симметричным управлением.
При несимметричном управлении Uов = const; Uоу = var , а при симметричном оба напряжения варьируются.
Достоинства симметричного управления состоят в лучших энергетических характеристиках приводов, т.е. больше КПД, меньше потери энергии и т.д.; что особенно характерно для следящих электроприводов, работающих в повторно кратковременных режимах.
Достоинством несимметричного управления является больший вращающий момент в номинальном режиме и более линейные механические характеристики.
Достоинства цифровых приводов по сравнению с непрерывными:
Исключение фазосдвигающегого конденсатора С, имеющего большую массу и габариты.
Можно использовать источник электроэнергии постоянного тока. УПУ и УМ работают в импульсном режиме.
Постоянный фазовый сдвиг 90 град. между обмоткой управления и обмоткой возбуждения, что увеличивает мощность привода.
