
- •4. Моменты асинхронного двигателя.
- •5. Поясните устройство и принцип действия генератора и дв-ля постоянного тока. Назначение и устройство коллектора в машинах постоянного тока (покажите принцип выпрямления эдс).
- •8. Способы регулирования скорости асинхронного двигателя.
- •9.Выбор мощности электродвигателей для работы в режимах s1, s2 и s3.
- •10. Частотное управление асинхронными двигателями.
- •Законы частотного регулирования
- •Статические механические характеристики ад при частотном управлении.
- •12. Система генератор – двигатель (гд).
- •13. Система тиристорный преобразователь – двигатель (тп – д).
- •14. Регулируемый электропривод переменного тока с вентильным д-ем (вд).
- •15. Энергетические ресурсы.
- •Доказанные запасы первичных энергоресурсов (пэр) в мире
- •16. Теплоэлектропроизводящие установки.
- •17. Паровые котельные установки.
- •18. Водогрейные котельные установки.
- •19. Тепловые сети и теплообменники.
- •20. Теплопотребление.
- •21. Холодильные машины, тепловые насосы.
- •22. Нагнетательные машины.
- •1. Центробежные вентиляторы.
- •3. Центробежные компрессоры.
- •23. Общая структура водоснабжения промышленного предприятия.
- •24. Задачи энергоаудита. Общие этапы энергоаудита и их содержание.
- •2 8. Анализ режимов работы компрессорного оборудования, системы разводки и потребления сжатых газов
- •Минимальный состав приборов для энергоаудита
- •Рекомендуемый состав приборов для энергоаудита
- •30. Автоматизированные системы контроля и учёта энергопотребления (аскуэ)
- •31. Технико-экономический анализ энергосберегающих мероприятий
- •33 Общий подход к проектированию суим. Осн.Этапы исследования и проектирования суим. Стадии проектирования, регламентированные госТом.
- •34. Релейно- контакторные су эп постоянного и переменного тока.
- •1. Рксу ад с короткозамкнутым ротором
- •2. Рксу ад с фазным ротором
- •3. Рксу двигателем постоянного тока
- •Динамическую точность систем стабилизации оценивают по величине
- •1.Форсирование управляющего воздействия.
- •2. Компенсация Больших Постоянных Времени объекта управления
- •36. Принципы построения типовых систем регулирования температуры, давления, расхода и иных технологических координат.
- •37. Реверсивный вентильный электропривод (вэп). Совместное управление. Раздельное управление.
- •38. Методы синтеза цифровых су им. Метод дискретизации аналоговых регуляторов класса «вход/выход» (метод аналогий). Цифровой пид- регулятор.
- •39. Типовая методика структурно-параметрического синтеза контуров регулирования су им по желаемой передаточной функции. Привести пример.
- •39. Типовая методика структурно-параметрического синтеза контуров регулирования систем управления по желаемой передаточной функции. Привести пример синтеза.
- •40. Место силовых преобразователей в эп, используемом в сист. Промышленного электроснабжения. Однофазные и трёхфазные схемы вентиальных преобразователей.
- •41. Работа 3-х фазного нулевого тп постоянного тока на активно-индуктивную нагрузку в режиме непрерывного тока при мгновенной коммутации. Диаграммы напряжения и тока при различных значениях угла
- •42. Процесс коммутации токов в фазах питающего трансформатора тп при переключении вентилей. Угол коммутации.
- •44. Принципы импульсного регулирования напряжения. Характер нагрузки импульсных преобразователей для электропривода постоянного тока. Параметры tр, t0, Ти, .
- •45. Тиристорные преобразователи частоты. Классификация. Двухзвенные пч с регулируемым напряжением (или током) в промежуточной цепи постоянного тока. Функциональная схема пч (с автономным инвертором).
- •46. Защита тп от аварийных режимов работы. Защита от перегрузок и коротких замыканий. Защита тп от перенапряжений. Виды перенапряжений.
- •47. Понятие модели, цели моделирования, виды моделирования, классификация моделей, применение моделирования.
- •48. Разработка математических моделей (понятие математического моделирования, этапы и принципы построения, формы представления математических моделей).
- •49. Методы исследования моделей (методы исследования матем. Моделей систем и процессов, имитационное моделирование).
- •50 Принципы управления объектами
- •51 Методика анализа устойчивости систем электроснабжения.
- •52 Анализ качества линейных систем автоматического управления в статике и динамике
- •1. Топология промышленных сетей
- •2. Физический интерфейс rs-485
- •3. Интерфейс «Токовая петля»
- •4. Hart-протокол
- •54 Место микропроцессоров в автоматизации систем энергоснабжения
- •1. Цифровые реле и защита в системах электроснабжения
- •2. Самодиагностика устройств црз
- •3. Принцип работы сторожевого таймера
- •55 Методы создания систем сбора данных на микроконтроллерах
- •1. Объекты адресации языков программирования плк
- •2. Язык релейных схем (ld)
- •3. Язык функциональных блок-схем (fbd)
- •4. Язык список команд (il)
- •56 Классификация систем диспетчерского управления в энергетике
- •1. Состав модулей cpu и функциональные возможности
- •2. Модули расширения вводов-выводов
- •3. Коммуникационные модули
- •4. Человеко-машинный интерфейс
- •5. Основы функционирования плк
- •57 Scada-системы в энергетике
- •1. Назначение и выполняемые функции
- •2. Краткие характеристики scada-система InTouch
- •3. Краткие характеристики scada-система Trace Mode
- •4. Краткие характеристики scada-система simatic WinCc
- •58 Модели основных силовых элементов электроэнергетических систем. Виды представления моделей. Схемы замещения и определение их параметров
- •Погонные и волновые параметры воздушных и кабельных линий переменного тока
- •Одноцепная транспонированная воздушная линия с нерасщепленной фазой
- •Т рансформаторы
- •Сдвоенные реакторы
- •Статические нагрузки в расчётных схемах электрических сетей
- •59 Методы расчёта режимов разомкнутых и простейших замкнутых электрических сетей
- •Расчёты режимов разомкнутых сетей
- •60 Схемы электрических сетей промышленных предприятий. Требования к надёжности электроснабжения. Схемы подключения источников питания. Выбор варианта схемы электроснабжения
- •61 Схемы распределения электроэнергии на промышленных предприятиях. Схемы электрических сетей промышленных предприятий на напряжения 6–10 кВ. Цеховые электрические сети напряжением до 1 кВ.
- •62. Статическая устойчивость электроэнергетических систем. Основные понятия и определения. Задачи и методы расчёта статической устойчивости.
- •63. Динамическая устойчивость электроэнергетических систем. Основные понятия и определения. Задачи и методы расчёта динамической устойчивости.
- •65. Мероприятия по улучшению устойчивости электроэнергетических систем
- •66. Электрические нагрузки. Показатели графиков электрических нагрузок. Методы расчёта.
- •Классификация графиков электрических нагрузок
- •Показатели графиков электрических нагрузок
- •Коэффициент спроса ( ).
- •Коэффициент заполнения графика нагрузки ( ).
- •Коэффициент равномерности графика нагрузки ( ).
- •67. Выбор силовых трансформаторов и месторасположения питающих и цеховых трансформаторных подстанций
- •Выбор мощности силовых трансформаторов
- •Картограмма нагрузок
- •Определение центра электрических нагрузок(цэн)
- •68. Компенсация реактивной мощности (виды и методы компенсации, выбор мощности и места установки компенсирующих устройств).
- •Выбор мощности и места установки компенсирующих устройств Определение места установки компенсирующих устройств в сетях до 1 кВ
- •Компенсация реактивной мощности в сети 6-10 кВ
- •В сетях с резкопеременной несимметричной нагрузкой
- •69. Защита элементов системы электроснабжения в сетях до 1000 в. Выбор предохранителей и автоматических выключателей
- •70. Цели и задачи расчёта токов короткого замыкания в сетях до 1000 в и выше 1 кВ. Практические методы расчёта токов кз. Учёт подпитки места кз от электродвигателей
- •71. Электробаланс и оценка режима электропотребления промышленного предприятия.
- •72. Качество электрической энергии. Основные показатели. Мероприятия по улучшению показатели качества электрической энергии
- •73 Измерительные трансформаторы тока и напряжения
- •, Или где nтв - витковый коэффициент трансформации,
- •74. Максимальные токовые защиты.
- •М тз с зависимой характеристикой времени срабатывания
- •75. Дифференциальные защиты
- •76. Дистанционные защиты
- •77. Защиты синхронных двигателей.
- •78. Защиты силовых трансформаторов
- •79. Микропроцессорные системы рЗиА.
- •80. Схемы электрических соединений тэц. Особенности выбора схем. Схемы тэц на генераторном и повышенных напряжениях. Собственные нужды тэц.
- •81. Схемы электрических соединений пс. Особенности выбора схем. Схемы на высшем и низшем напряжениях. Собственные нужды пс.
- •1. Нормы технологического проектирования электронабж пром. Предприятий нтп эпп-94
- •2. Рекомендации по технологическому проектированию подстанций переменного тока с высшим напряжением 35-750 кВ (со 153-34.20.187-2003)
- •Общие положения по выбору электрических аппаратов и параметров токоведущих устройств
- •Выбор электрических устройств по длительному режиму работы
- •Выбор электрических устройств по току кз
- •Выбор и проверка элементов системы электроснабжения выше 1кВ
- •84. Регулирование напряжения в эл.Сетях. Методы и принципы регулирования напряжения. Регулирование напряжения методом изменения потерь напряжения в сети.
- •Климатические условия и их нормирование
- •Определение удельных нагрузок на провода и тросы
- •Критическая температура
80. Схемы электрических соединений тэц. Особенности выбора схем. Схемы тэц на генераторном и повышенных напряжениях. Собственные нужды тэц.
При проектировании электрической части ТЭЦ необходимо учитывать следующие их особенности:
1. ТЭЦ сооружаются около или в черте промышленных объектов и городов, возможно ближе к тепловой нагрузке.
2. Большую или значительную часть вырабатываемой электроэнергии ТЭЦ выдают местной нагрузке на генераторном напряжении. Исключение составляют ТЭЦ блочного типа с крупными агрегатами.
Структурная схема ТЭЦ приведена на
рнс. 29-3. На схеме показаны генераторы
Г, система С, РУ высшего и низшего
напряжений (РУ ВН, РУ НН), нагрузка
НГ, потребители собственных нужд СН,
котлы К, турбины Т, питательная вода ПВ.
Блочная часть схемы (показана
пунктиром) появляется на действующих
ТЭЦ при их расширении крупными
агрегатами по 100 - 250 МВт.
Схемы
ТЭЦ проектируются в увязке со схемами
электроснабжения соответствующих
промышленных предприятий или городов
и схемами распределительных сетей.
Отказ любого из выключателей схемы
не должен приводить к нарушению
устойчивости работы энергосистемы,
к нарушению электро- и теплоснабжения
потребителей ТЭЦ.
Выбор трансформаторов
Для связи ТЭЦ, имеющих РУНН, с энергосистемой
обычно устанавливаются два или большее
число трансформаторов. Суммарная
мощность трансформаторов выбирается
по условию
где Sг.ycт —
установленная мощность генераторов;
Sс,н тах — максимальная
нагрузка собственных нужд; Sнг
min — минимальная по
суточному графику нагрузка потребителей
генераторногонапряжения:
При выборе мощности трансформаторов учитывается следующее:
а) если мощность на тепловом потреблении меньше установленной мощности генераторов и выдача всей мощности ТЭЦ в систему при минимуме нагрузки генераторного напряжения требуется только при кратковременных режимах в системе, то при выборе трансформаторов может быть учтена их допустимая перегрузка; б) трансформаторы должны быть проверены на режим питания нагрузки генераторного напряжения как в нормальном режиме, так и при отказе одного из генераторов. Мощность трансформа-торов выбирается с учетом их нагрузочной способности в нормальном режиме и работы с допустимой аварийной перегрузкой при отказе одного из генераторов или трансформаторов; в) в период паводка возможно снижение загрузки генераторов ТЭЦ за счет большей загрузки агрегатов ГЭС. Блочные трансформаторы выбираются с учетом мощности генератора блока, нагрузки собственных нужд и местной нагрузки, если она подключена на ответвлении к блоку.
Схемы на генераторном напряжении
Распределительные устройства генераторного напряжения (ГРУ) выполняются, как правило, с одной системой сборных шин (рис. 29-4,а), при этом рекомендуется использовать КРУ и групповые сдвоен-ные реакторы для питания потребителей (рис. 29-4, б,в). Ранее при проектировании ТЭЦ, особенно при большом числе присоединений генераторного напряжения, широко использовали схему с двумя системами сборных шин (рис. 29-4. г, д). В отдельных случаях была использована также схема звезды с уравнительной системой шин (рис. 29-4, е). Трансформаторы связи ТЭЦ с системой принимаются с регулированием напряжения под нагрузкой (с РПН). Для ограничения токов короткого замыкания в сети генераторного напряжения рекомендуется использовать сдвоенные реакторы. На реактированных линиях должна, как правило, применяться следующая схема соединения элементов: шины-реактор-ыключатель-иния. Схема шины-ыключатель-реактор-линия допускается к применению при расширении действующих ТЭЦ, ранее выполненных с такой же схемой. При необходимости глубокого ограничения уровней токов КЗ допуска-ется раздельная работа секций ГРУ с обеспечением параллельной работы агрегатов ТЭЦ на повышенном напряжении, при этом, однако, должно быть обеспечено надежное питание потребителей ТЭЦ.
Схемы на повышенных напряжениях
На повышенных напряжениях ТЭЦ рекомендуются к использованию те же схемы, что и для КЭС с соответствующими номинальными напряжениями сетей. С учетом единичных мощностей используемых агрегатов высшее напряжение ТЭЦ обычно принимается равным ПО или, 220 кВ.