
- •4. Моменты асинхронного двигателя.
- •5. Поясните устройство и принцип действия генератора и дв-ля постоянного тока. Назначение и устройство коллектора в машинах постоянного тока (покажите принцип выпрямления эдс).
- •8. Способы регулирования скорости асинхронного двигателя.
- •9.Выбор мощности электродвигателей для работы в режимах s1, s2 и s3.
- •10. Частотное управление асинхронными двигателями.
- •Законы частотного регулирования
- •Статические механические характеристики ад при частотном управлении.
- •12. Система генератор – двигатель (гд).
- •13. Система тиристорный преобразователь – двигатель (тп – д).
- •14. Регулируемый электропривод переменного тока с вентильным д-ем (вд).
- •15. Энергетические ресурсы.
- •Доказанные запасы первичных энергоресурсов (пэр) в мире
- •16. Теплоэлектропроизводящие установки.
- •17. Паровые котельные установки.
- •18. Водогрейные котельные установки.
- •19. Тепловые сети и теплообменники.
- •20. Теплопотребление.
- •21. Холодильные машины, тепловые насосы.
- •22. Нагнетательные машины.
- •1. Центробежные вентиляторы.
- •3. Центробежные компрессоры.
- •23. Общая структура водоснабжения промышленного предприятия.
- •24. Задачи энергоаудита. Общие этапы энергоаудита и их содержание.
- •2 8. Анализ режимов работы компрессорного оборудования, системы разводки и потребления сжатых газов
- •Минимальный состав приборов для энергоаудита
- •Рекомендуемый состав приборов для энергоаудита
- •30. Автоматизированные системы контроля и учёта энергопотребления (аскуэ)
- •31. Технико-экономический анализ энергосберегающих мероприятий
- •33 Общий подход к проектированию суим. Осн.Этапы исследования и проектирования суим. Стадии проектирования, регламентированные госТом.
- •34. Релейно- контакторные су эп постоянного и переменного тока.
- •1. Рксу ад с короткозамкнутым ротором
- •2. Рксу ад с фазным ротором
- •3. Рксу двигателем постоянного тока
- •Динамическую точность систем стабилизации оценивают по величине
- •1.Форсирование управляющего воздействия.
- •2. Компенсация Больших Постоянных Времени объекта управления
- •36. Принципы построения типовых систем регулирования температуры, давления, расхода и иных технологических координат.
- •37. Реверсивный вентильный электропривод (вэп). Совместное управление. Раздельное управление.
- •38. Методы синтеза цифровых су им. Метод дискретизации аналоговых регуляторов класса «вход/выход» (метод аналогий). Цифровой пид- регулятор.
- •39. Типовая методика структурно-параметрического синтеза контуров регулирования су им по желаемой передаточной функции. Привести пример.
- •39. Типовая методика структурно-параметрического синтеза контуров регулирования систем управления по желаемой передаточной функции. Привести пример синтеза.
- •40. Место силовых преобразователей в эп, используемом в сист. Промышленного электроснабжения. Однофазные и трёхфазные схемы вентиальных преобразователей.
- •41. Работа 3-х фазного нулевого тп постоянного тока на активно-индуктивную нагрузку в режиме непрерывного тока при мгновенной коммутации. Диаграммы напряжения и тока при различных значениях угла
- •42. Процесс коммутации токов в фазах питающего трансформатора тп при переключении вентилей. Угол коммутации.
- •44. Принципы импульсного регулирования напряжения. Характер нагрузки импульсных преобразователей для электропривода постоянного тока. Параметры tр, t0, Ти, .
- •45. Тиристорные преобразователи частоты. Классификация. Двухзвенные пч с регулируемым напряжением (или током) в промежуточной цепи постоянного тока. Функциональная схема пч (с автономным инвертором).
- •46. Защита тп от аварийных режимов работы. Защита от перегрузок и коротких замыканий. Защита тп от перенапряжений. Виды перенапряжений.
- •47. Понятие модели, цели моделирования, виды моделирования, классификация моделей, применение моделирования.
- •48. Разработка математических моделей (понятие математического моделирования, этапы и принципы построения, формы представления математических моделей).
- •49. Методы исследования моделей (методы исследования матем. Моделей систем и процессов, имитационное моделирование).
- •50 Принципы управления объектами
- •51 Методика анализа устойчивости систем электроснабжения.
- •52 Анализ качества линейных систем автоматического управления в статике и динамике
- •1. Топология промышленных сетей
- •2. Физический интерфейс rs-485
- •3. Интерфейс «Токовая петля»
- •4. Hart-протокол
- •54 Место микропроцессоров в автоматизации систем энергоснабжения
- •1. Цифровые реле и защита в системах электроснабжения
- •2. Самодиагностика устройств црз
- •3. Принцип работы сторожевого таймера
- •55 Методы создания систем сбора данных на микроконтроллерах
- •1. Объекты адресации языков программирования плк
- •2. Язык релейных схем (ld)
- •3. Язык функциональных блок-схем (fbd)
- •4. Язык список команд (il)
- •56 Классификация систем диспетчерского управления в энергетике
- •1. Состав модулей cpu и функциональные возможности
- •2. Модули расширения вводов-выводов
- •3. Коммуникационные модули
- •4. Человеко-машинный интерфейс
- •5. Основы функционирования плк
- •57 Scada-системы в энергетике
- •1. Назначение и выполняемые функции
- •2. Краткие характеристики scada-система InTouch
- •3. Краткие характеристики scada-система Trace Mode
- •4. Краткие характеристики scada-система simatic WinCc
- •58 Модели основных силовых элементов электроэнергетических систем. Виды представления моделей. Схемы замещения и определение их параметров
- •Погонные и волновые параметры воздушных и кабельных линий переменного тока
- •Одноцепная транспонированная воздушная линия с нерасщепленной фазой
- •Т рансформаторы
- •Сдвоенные реакторы
- •Статические нагрузки в расчётных схемах электрических сетей
- •59 Методы расчёта режимов разомкнутых и простейших замкнутых электрических сетей
- •Расчёты режимов разомкнутых сетей
- •60 Схемы электрических сетей промышленных предприятий. Требования к надёжности электроснабжения. Схемы подключения источников питания. Выбор варианта схемы электроснабжения
- •61 Схемы распределения электроэнергии на промышленных предприятиях. Схемы электрических сетей промышленных предприятий на напряжения 6–10 кВ. Цеховые электрические сети напряжением до 1 кВ.
- •62. Статическая устойчивость электроэнергетических систем. Основные понятия и определения. Задачи и методы расчёта статической устойчивости.
- •63. Динамическая устойчивость электроэнергетических систем. Основные понятия и определения. Задачи и методы расчёта динамической устойчивости.
- •65. Мероприятия по улучшению устойчивости электроэнергетических систем
- •66. Электрические нагрузки. Показатели графиков электрических нагрузок. Методы расчёта.
- •Классификация графиков электрических нагрузок
- •Показатели графиков электрических нагрузок
- •Коэффициент спроса ( ).
- •Коэффициент заполнения графика нагрузки ( ).
- •Коэффициент равномерности графика нагрузки ( ).
- •67. Выбор силовых трансформаторов и месторасположения питающих и цеховых трансформаторных подстанций
- •Выбор мощности силовых трансформаторов
- •Картограмма нагрузок
- •Определение центра электрических нагрузок(цэн)
- •68. Компенсация реактивной мощности (виды и методы компенсации, выбор мощности и места установки компенсирующих устройств).
- •Выбор мощности и места установки компенсирующих устройств Определение места установки компенсирующих устройств в сетях до 1 кВ
- •Компенсация реактивной мощности в сети 6-10 кВ
- •В сетях с резкопеременной несимметричной нагрузкой
- •69. Защита элементов системы электроснабжения в сетях до 1000 в. Выбор предохранителей и автоматических выключателей
- •70. Цели и задачи расчёта токов короткого замыкания в сетях до 1000 в и выше 1 кВ. Практические методы расчёта токов кз. Учёт подпитки места кз от электродвигателей
- •71. Электробаланс и оценка режима электропотребления промышленного предприятия.
- •72. Качество электрической энергии. Основные показатели. Мероприятия по улучшению показатели качества электрической энергии
- •73 Измерительные трансформаторы тока и напряжения
- •, Или где nтв - витковый коэффициент трансформации,
- •74. Максимальные токовые защиты.
- •М тз с зависимой характеристикой времени срабатывания
- •75. Дифференциальные защиты
- •76. Дистанционные защиты
- •77. Защиты синхронных двигателей.
- •78. Защиты силовых трансформаторов
- •79. Микропроцессорные системы рЗиА.
- •80. Схемы электрических соединений тэц. Особенности выбора схем. Схемы тэц на генераторном и повышенных напряжениях. Собственные нужды тэц.
- •81. Схемы электрических соединений пс. Особенности выбора схем. Схемы на высшем и низшем напряжениях. Собственные нужды пс.
- •1. Нормы технологического проектирования электронабж пром. Предприятий нтп эпп-94
- •2. Рекомендации по технологическому проектированию подстанций переменного тока с высшим напряжением 35-750 кВ (со 153-34.20.187-2003)
- •Общие положения по выбору электрических аппаратов и параметров токоведущих устройств
- •Выбор электрических устройств по длительному режиму работы
- •Выбор электрических устройств по току кз
- •Выбор и проверка элементов системы электроснабжения выше 1кВ
- •84. Регулирование напряжения в эл.Сетях. Методы и принципы регулирования напряжения. Регулирование напряжения методом изменения потерь напряжения в сети.
- •Климатические условия и их нормирование
- •Определение удельных нагрузок на провода и тросы
- •Критическая температура
65. Мероприятия по улучшению устойчивости электроэнергетических систем
Повысить уровень устойчивости электрической системы можно изменением параметров ее элементов, параметров ее режима или введением дополнительных устройств. При этом необходимо учитывать следующие условия и ограничения:
257
изменение параметров основных элементов не должно при водить к ухудшению нормального режима работы системы и его экономичности;
применение устройства для улучшения устойчивости должно сопровождаться сопоставлением его стоимости и ущерба от нарушения того вида устойчивости, для которого оно предназначено,при выборе мероприятия по повышению устойчивости необходима технико-экономическая оценка предлагаемого варианта.
МЕРОПРИЯТИЯ, ОСНОВАННЫЕ НА УЛУЧШЕНИИ ПАРАМЕТРОВ ЭЛЕМЕНТОВ ЭЛЕКТРИЧЕСКОЙ СИСТЕМЫ
Генераторы. Параметры генераторов оказывают существенное влияние как на статическую, так и на динамическую устойчивость.
При использовании на генераторах АРВ с зоной нечувствительности на статическую устойчивость влияет синхронное индуктивное сопротивление xd, на динамическую - переходное сопротивление х'и и постоянная инерция 7}. Процессы, протекающие в асинхронном режиме, при осуществлении ресинхронизации определяются наличием и конструкцией демпферных обмоток, что находит отражение в параметрах x"d и x"q.
Существует реальная возможность изменения индуктивных сопротивлений только у гидрогенераторов, которые выполнены по индивидуальным проектам. На некоторых гидроэлектростанциях как в нашей стране, так и за рубежом установлены специальные гидрогенераторы с «улучшенными» параметрами. Примером могут служить гидрогенераторы Волжской ГЭС, у которых сопротивления снижены почти вдвое по сравнению с обычными (xd = 0.51, x'd= 0.19), а постоянная инерции увеличена до 16 с. Обычно турбогенераторы и двигатели изготавливаются едиными сериями с заданными параметрами, изменение которых трудноосуществимо.
Постоянная инерции существенно влияет на динамическую устойчивость машины. Чем больше 7} («тяжелее» машина), тем медленнее изменяется скорость ее ротора под действием избыточного момента. Это увеличивает предельно допустимое время существования аварийного режима, повышая устойчивость системы.
Регулирование возбуждения синхронной машины может рассматриваться как средство «улучшения» ее параметров. Регуляторы сильного действия генератора с высокими потолками тока
возбуждения в сочетании с дополнительными устройствами по повышению динамической устойчивости позволяют отказаться от уменьшения индуктивных сопротивлений. Появляется возможность применять генераторы с Xd = 1.5 ... 2.0 и x'd = 0.3...0.4 и снижать постоянную инерции, уменьшая вес машины и, следовательно, снижая ее стоимость.
Потолочное напряжение возбудителя заметно влияет на предел передаваемой мощности генератора. Увеличение этого значения с 2 до 5 дает тот же эффект, что и уменьшение реактивности Xd в 1.5 раза.
Скорость подъема возбуждения значительно влияет на ур0' вень динамической устойчивости. У «быстроотзывчивых» систем возбуждения относительная величина dUJdt доходит до 6...8, составляя несколько киловольт в секунду. Следовательно, для повышения уровня динамической устойчивости необходимы высокий потолок и большая скорость подъема напряжения.
Для улучшения статической устойчивости необходимы отсутствие зоны нечувствительности, непрерывное действие регуляторов возбуждения, регулирование не только по отклонению, но и по первой и второй производным регулируемой величины.
Трансформаторы. Параметры трансформаторов (сопротивления, намагничивающий ток и т.д.) не оказывают существенного влияния на устойчивость электрических систем.
Выключатели. Быстрое отключение КЗ имеет решающее значение для улучшения динамической устойчивости. Время отключения КЗ складывается из собственного времени выключателя tB и времени действия релейной защиты:
Современные воздушные выключатели имеют собственное время (с момента подачи импульса от защиты на катушку соленоида до расхождения контактов и погасания дуги) в пределах 0.06...0.08 с. Быстродействующая релейная защита срабатывает за 0.02...0.04 с. Следовательно, время отключения КЗ должно приниматься равным 0.1...0.12 с. Возможно, в дальнейшем это время сократится до 0.05...0.08 с, но в этом случае надо тщательно проверять влияние переходных процессов на действие релейной защиты.
Уменьшение времени отключения КЗ увеличивает запас динамической устойчивости, как это следует из рис. 12.1. Угол отключения КЗ на рис. 12.1, б уменьшен по сравнению с рис. 12.1, а. Это приводит к существенному увеличению запаса динамической устойчивости.
Линии электропередачи. Параметры линий и их номинальное напряжение оказывают существенное влияние на устойчивость системы.
Индуктивное сопротивление линии может быть снижено расщеплением проводов, применяемым с целью уменьшения потерь на корону. Расщепление фазы на три провода (ВЛ 500 кВ) уменьшает реактивное сопротивление линии на 25...30 %.
Уменьшить индуктивное сопротивлении линии можно, применяя продольную (емкостную) компенсацию реактивного сопротивления ВЛ, которая осуществляется последовательным включением в линию статических конденсаторов.
Чем больше сопротивление конденсаторов хс, тем выше степень компенсации параметров линии и, следовательно, выше предел передаваемой мощности электропередачи, в состав которой входит компенсированная линия. Для повышения пропускной способности дальних электропередач применяются промежуточны синхронные компенсаторы и управляемые конденсаторы.
В системах электроснабжения продольная емкостная компенсация применяется на мощных токопроводах, уменьшая падение напряжения и повышая устойчивость двигателей нагрузки.
ДОПОЛНИТЕЛЬНЫЕ УСТРОЙСТВА ДЛЯ ПОВЫШЕНИЯ УРОВНЯ УСТОЙЧИВОСТИ
Сопротивления, включенные в нейтраль трансформатора. Если сеть с глухозаземленной нейтралью заземлить через небольшое сопротивление, не повышающее напряжения на нейтрали, то условия работы изоляции не изменятся, а динамическая устойчивость системы при несимметричных КЗ улучшится.
Тогда взаимное сопротивление схемы прямой последовательности (рис. 12.2, в) в соответствии с выражением (10.2) уменьшится. Это вызовет возрастание амплитуды характеристики мощности аварийного режима (см. характеристику 2 на рис. 10.3), что в свою очередь уменьшит площадь ускорения abed. Уменьшение площади ускорения приводит к увеличению коэффициента запаса динамической устойчивости.
Электрическое торможение генераторов используется для повышения устойчивости при симметричных КЗ. Генератор, ротор которого ускоряется из-за какого-либо возмущения, тормозится активными сопротивлениями, включаемыми последовательно или параллельно (рис. 12.3). Наиболее эффективно параллельное включение сопротивления.
Регулирование турбин. Небаланс мощности, возникающий при возмущении генератора, может быть уменьшен или полностью скомпенсирован снижением мощности турбины. Если бы регуляторы турбины были безынерционны, т.е. могли мгновенно реагировать на изменение электрической мощности, соответственно меняя механическую мощность, то возможность нарушения динамической устойчивости была бы исключена. Однако обычные ре-■Уляторы турбин являются инерционными системами со значи-
Рис. 12.2. Включение активных сопротивлений в нейтраль трансформаторов: а - принципиальная схема; б-схема замещения нулевой последовательности; в - схема замещения прямой последовательности с включе-
(1,1)
нием Z1
Рис. 12.3. Электрическое торможение генераторов: а - последовательное; б - параллельное включение
.
РЕЖИМНЫЕ МЕРОПРИЯТИЯ ПО ПОВЫШЕНИЮ устойчивости
Повысить уровни статической и динамической устойчивости можно, не изменяя параметров элементов системы и не вводя дополнительных элементов. Целенаправленное изменение параметров режима системы, обеспечение необходимых резервов мощности могут существенно увеличить запасы устойчивости.
Резервы активной мощности на электрических станциях улучшают как статическую, так и динамическую устойчивость. Существуют несколько видов резервов: аварийный, нагрузочный, ремонтный. Улучшению переходных процессов может способствовать только вращающийся аварийный резерв, вводимый при выпадении из синхронизма генераторов или отключении мощных электропередач. Величина минимально необходимого резерва определяется вероятностью наиболее тяжелых аварий и зависит от схемы системы, способа регулирования возбуждения и т.п.
Резервы реактивной мощности, получаемые за счет недогрузки генераторов в исходном режиме реактивной мощностью, приводят к ухудшению устойчивости. Генератор в этом случае работает с пониженным током возбуждения и большими начальными углами.
Автоматическая частотная разгрузка {А ЧР). Снижение частоты в системе происходит из-за нарушения баланса по активной мощности, т.е. когда активная мощность нагрузки становится больше активной мощности, выдаваемой генераторами. При снижении частоты реактивная мощность, вырабатываемая генераторами, уменьшается, а реактивная мощность, потребляемая нагрузкой, увеличивается. Это понижает напряжение в узлах нагрузки и в некоторых случаях вызывает лавину частоты и напряжения, приводящие к массовому отключению потребителей и нарушению устойчивости параллельной работы. При снижении частоты до опасных пределов автоматически отключается часть нагрузки электрической системы. АЧР повышает как устойчивость электрической системы, так и устойчивость отдельных узлов ее нагрузки, предотвращая лавину напряжения. В результате обеспечивается нормальная работа основной массы ответственных потребителей. При подключении промышленных предприятий к системе АЧР приходится учитывать необходимость обеспечения бесперебойности технологических процессов при перерывах в питании.
ризуется изменением нагрузки, при которой величина и фаза напряжения будут измеряться на некоторое определенное значение, принимаемое за единицу. Жесткость зависит от относительных сопротивлений, связывающих узловые точки системы. Чем сильнее зафиксированы значения напряжений узлов по величине и фазе, чем теснее эти узлы связаны между собой, тем больше жесткость системы. Повышение жесткости схемы улучшает статическую устойчивость, а также послеаварийные режимы системы. Но в жесткой схеме повышаются уровни токов КЗ, возникают проблемы в работе релейной защиты.
Разделение электрических систем на несинхронно работающие части может предотвратить нарушение динамической устойчивости. В каждой электрической системе заранее устанавливаются точки или сечения, в которых разделение может быть произведено безболезненно. Деление системы приводит к ее ослаблению, поэтому может быть рекомендовано только тогда, когда оно является единственным способом сохранения динамической устойчивости.