
- •4. Моменты асинхронного двигателя.
- •5. Поясните устройство и принцип действия генератора и дв-ля постоянного тока. Назначение и устройство коллектора в машинах постоянного тока (покажите принцип выпрямления эдс).
- •8. Способы регулирования скорости асинхронного двигателя.
- •9.Выбор мощности электродвигателей для работы в режимах s1, s2 и s3.
- •10. Частотное управление асинхронными двигателями.
- •Законы частотного регулирования
- •Статические механические характеристики ад при частотном управлении.
- •12. Система генератор – двигатель (гд).
- •13. Система тиристорный преобразователь – двигатель (тп – д).
- •14. Регулируемый электропривод переменного тока с вентильным д-ем (вд).
- •15. Энергетические ресурсы.
- •Доказанные запасы первичных энергоресурсов (пэр) в мире
- •16. Теплоэлектропроизводящие установки.
- •17. Паровые котельные установки.
- •18. Водогрейные котельные установки.
- •19. Тепловые сети и теплообменники.
- •20. Теплопотребление.
- •21. Холодильные машины, тепловые насосы.
- •22. Нагнетательные машины.
- •1. Центробежные вентиляторы.
- •3. Центробежные компрессоры.
- •23. Общая структура водоснабжения промышленного предприятия.
- •24. Задачи энергоаудита. Общие этапы энергоаудита и их содержание.
- •2 8. Анализ режимов работы компрессорного оборудования, системы разводки и потребления сжатых газов
- •Минимальный состав приборов для энергоаудита
- •Рекомендуемый состав приборов для энергоаудита
- •30. Автоматизированные системы контроля и учёта энергопотребления (аскуэ)
- •31. Технико-экономический анализ энергосберегающих мероприятий
- •33 Общий подход к проектированию суим. Осн.Этапы исследования и проектирования суим. Стадии проектирования, регламентированные госТом.
- •34. Релейно- контакторные су эп постоянного и переменного тока.
- •1. Рксу ад с короткозамкнутым ротором
- •2. Рксу ад с фазным ротором
- •3. Рксу двигателем постоянного тока
- •Динамическую точность систем стабилизации оценивают по величине
- •1.Форсирование управляющего воздействия.
- •2. Компенсация Больших Постоянных Времени объекта управления
- •36. Принципы построения типовых систем регулирования температуры, давления, расхода и иных технологических координат.
- •37. Реверсивный вентильный электропривод (вэп). Совместное управление. Раздельное управление.
- •38. Методы синтеза цифровых су им. Метод дискретизации аналоговых регуляторов класса «вход/выход» (метод аналогий). Цифровой пид- регулятор.
- •39. Типовая методика структурно-параметрического синтеза контуров регулирования су им по желаемой передаточной функции. Привести пример.
- •39. Типовая методика структурно-параметрического синтеза контуров регулирования систем управления по желаемой передаточной функции. Привести пример синтеза.
- •40. Место силовых преобразователей в эп, используемом в сист. Промышленного электроснабжения. Однофазные и трёхфазные схемы вентиальных преобразователей.
- •41. Работа 3-х фазного нулевого тп постоянного тока на активно-индуктивную нагрузку в режиме непрерывного тока при мгновенной коммутации. Диаграммы напряжения и тока при различных значениях угла
- •42. Процесс коммутации токов в фазах питающего трансформатора тп при переключении вентилей. Угол коммутации.
- •44. Принципы импульсного регулирования напряжения. Характер нагрузки импульсных преобразователей для электропривода постоянного тока. Параметры tр, t0, Ти, .
- •45. Тиристорные преобразователи частоты. Классификация. Двухзвенные пч с регулируемым напряжением (или током) в промежуточной цепи постоянного тока. Функциональная схема пч (с автономным инвертором).
- •46. Защита тп от аварийных режимов работы. Защита от перегрузок и коротких замыканий. Защита тп от перенапряжений. Виды перенапряжений.
- •47. Понятие модели, цели моделирования, виды моделирования, классификация моделей, применение моделирования.
- •48. Разработка математических моделей (понятие математического моделирования, этапы и принципы построения, формы представления математических моделей).
- •49. Методы исследования моделей (методы исследования матем. Моделей систем и процессов, имитационное моделирование).
- •50 Принципы управления объектами
- •51 Методика анализа устойчивости систем электроснабжения.
- •52 Анализ качества линейных систем автоматического управления в статике и динамике
- •1. Топология промышленных сетей
- •2. Физический интерфейс rs-485
- •3. Интерфейс «Токовая петля»
- •4. Hart-протокол
- •54 Место микропроцессоров в автоматизации систем энергоснабжения
- •1. Цифровые реле и защита в системах электроснабжения
- •2. Самодиагностика устройств црз
- •3. Принцип работы сторожевого таймера
- •55 Методы создания систем сбора данных на микроконтроллерах
- •1. Объекты адресации языков программирования плк
- •2. Язык релейных схем (ld)
- •3. Язык функциональных блок-схем (fbd)
- •4. Язык список команд (il)
- •56 Классификация систем диспетчерского управления в энергетике
- •1. Состав модулей cpu и функциональные возможности
- •2. Модули расширения вводов-выводов
- •3. Коммуникационные модули
- •4. Человеко-машинный интерфейс
- •5. Основы функционирования плк
- •57 Scada-системы в энергетике
- •1. Назначение и выполняемые функции
- •2. Краткие характеристики scada-система InTouch
- •3. Краткие характеристики scada-система Trace Mode
- •4. Краткие характеристики scada-система simatic WinCc
- •58 Модели основных силовых элементов электроэнергетических систем. Виды представления моделей. Схемы замещения и определение их параметров
- •Погонные и волновые параметры воздушных и кабельных линий переменного тока
- •Одноцепная транспонированная воздушная линия с нерасщепленной фазой
- •Т рансформаторы
- •Сдвоенные реакторы
- •Статические нагрузки в расчётных схемах электрических сетей
- •59 Методы расчёта режимов разомкнутых и простейших замкнутых электрических сетей
- •Расчёты режимов разомкнутых сетей
- •60 Схемы электрических сетей промышленных предприятий. Требования к надёжности электроснабжения. Схемы подключения источников питания. Выбор варианта схемы электроснабжения
- •61 Схемы распределения электроэнергии на промышленных предприятиях. Схемы электрических сетей промышленных предприятий на напряжения 6–10 кВ. Цеховые электрические сети напряжением до 1 кВ.
- •62. Статическая устойчивость электроэнергетических систем. Основные понятия и определения. Задачи и методы расчёта статической устойчивости.
- •63. Динамическая устойчивость электроэнергетических систем. Основные понятия и определения. Задачи и методы расчёта динамической устойчивости.
- •65. Мероприятия по улучшению устойчивости электроэнергетических систем
- •66. Электрические нагрузки. Показатели графиков электрических нагрузок. Методы расчёта.
- •Классификация графиков электрических нагрузок
- •Показатели графиков электрических нагрузок
- •Коэффициент спроса ( ).
- •Коэффициент заполнения графика нагрузки ( ).
- •Коэффициент равномерности графика нагрузки ( ).
- •67. Выбор силовых трансформаторов и месторасположения питающих и цеховых трансформаторных подстанций
- •Выбор мощности силовых трансформаторов
- •Картограмма нагрузок
- •Определение центра электрических нагрузок(цэн)
- •68. Компенсация реактивной мощности (виды и методы компенсации, выбор мощности и места установки компенсирующих устройств).
- •Выбор мощности и места установки компенсирующих устройств Определение места установки компенсирующих устройств в сетях до 1 кВ
- •Компенсация реактивной мощности в сети 6-10 кВ
- •В сетях с резкопеременной несимметричной нагрузкой
- •69. Защита элементов системы электроснабжения в сетях до 1000 в. Выбор предохранителей и автоматических выключателей
- •70. Цели и задачи расчёта токов короткого замыкания в сетях до 1000 в и выше 1 кВ. Практические методы расчёта токов кз. Учёт подпитки места кз от электродвигателей
- •71. Электробаланс и оценка режима электропотребления промышленного предприятия.
- •72. Качество электрической энергии. Основные показатели. Мероприятия по улучшению показатели качества электрической энергии
- •73 Измерительные трансформаторы тока и напряжения
- •, Или где nтв - витковый коэффициент трансформации,
- •74. Максимальные токовые защиты.
- •М тз с зависимой характеристикой времени срабатывания
- •75. Дифференциальные защиты
- •76. Дистанционные защиты
- •77. Защиты синхронных двигателей.
- •78. Защиты силовых трансформаторов
- •79. Микропроцессорные системы рЗиА.
- •80. Схемы электрических соединений тэц. Особенности выбора схем. Схемы тэц на генераторном и повышенных напряжениях. Собственные нужды тэц.
- •81. Схемы электрических соединений пс. Особенности выбора схем. Схемы на высшем и низшем напряжениях. Собственные нужды пс.
- •1. Нормы технологического проектирования электронабж пром. Предприятий нтп эпп-94
- •2. Рекомендации по технологическому проектированию подстанций переменного тока с высшим напряжением 35-750 кВ (со 153-34.20.187-2003)
- •Общие положения по выбору электрических аппаратов и параметров токоведущих устройств
- •Выбор электрических устройств по длительному режиму работы
- •Выбор электрических устройств по току кз
- •Выбор и проверка элементов системы электроснабжения выше 1кВ
- •84. Регулирование напряжения в эл.Сетях. Методы и принципы регулирования напряжения. Регулирование напряжения методом изменения потерь напряжения в сети.
- •Климатические условия и их нормирование
- •Определение удельных нагрузок на провода и тросы
- •Критическая температура
Минимальный состав приборов для энергоаудита
Для проведения энергоаудита в состав портативной измерительной лаборатории должны, как минимум, входить следующие приборы:
ультразвуковой расходомер жидкости (накладной), позволяющий проводить измерения скорости, расхода и количества жидкости, протекающей в трубопроводе без нарушения его целостности и снятия давления;
электрохимический газоанализатор, определяющий содержание кислорода, окиси углерода, температуру продуктов сгорания;
электроанализатор, измеряющий и регистрирующий токи и напряжения в 3 фазах, активную и реактивную мощности, потребленную активную и реактивную электроэнергию;
бесконтактный (инфракрасный) термометр с диапазоном измерения от 0 до 60 °С;
набор термометров с различными датчиками: воздушными, жидкостными (погружными), поверхностными (накладными, контактными и др.);
люксметр; анемометр; гигрометр; накопитель данных для записи переменных сигналов.
Накопитель должен иметь не менее двух температурных каналов для непосредственного подключения температурных датчиков, а также не менее двух токовых или потенциальных каналов для регистрации стандартных аналоговых сигналов.
Рекомендуемый состав приборов для энергоаудита
Минимальный состав портативной измерительной лаборатории рекомендуется расширить дополнительными приборами. В первую очередь в перечисленный в предыдущем разделе набор следует внести следующие дополнения:
ультразвуковых расходомеров должно быть не менее 2 для сведения баланса в гидравлических сетях. Один из них должен быть оснащен высокотемпературными датчиками, работающими при температурах теплоносителя до 200 °С;
электрохимические анализаторы должны быть оснащены датчиками для определения концентрации окислов азота и серы в дымовых газах, а также пылемерами.
В состав лаборатории следует включить дополнительно:
анализатор качества электроэнергии (гармонических искажений);
тестер электроизоляции;
тестер заземления;
микроомметр для проверки контактных сопротивлений;
корреляционный определитель мест повреждения трубопроводов;
различные течеискатели и детекторы газов;
тепловизор;
высокотемпературный инфракрасный термометр (пирометр);
толщиномер для определения толщины стенок трубопроводов и резервуаров;
расходомер для стоков;
манометры и дифманометры на различные пределы измерений;
определитель качества воды (солесодержание, рН, растворенный кислород);
тахометр;
динамометры для измерения усилий и крутящего момента;
портативный компьютер.
30. Автоматизированные системы контроля и учёта энергопотребления (аскуэ)
Решение проблем связанных с учетом энергопотребления на предприятии требует создание автоматизированных систем контроля и учёта энергопотребления (АСКУЭ).
При наличии современной АСКУЭ промышленное предприятие полностью контролирует весь свой процесс энергопотребления и имеет возможность по согласованию с поставщиками энергоресурсов гибко переходить к разным тарифным системам, минимизируя свои энергозатраты. Основные цели создания АСКУЭ:
1.Автоматизированные системы контроля и учёта энергоресурсов при минимальном участии человека на этапе измерения, сбора и обработки данных должны обеспечить достоверный, точный, оперативный и гибкий, адаптируемый к различным тарифным системам учет электроэнергии, как со стороны поставщика энергоресурсов, так и со стороны потребителя.
2.На основе достоверной и оперативной информации можно принять решения по диспетчерскому или автоматическому управлению, чтобы снизить максимумы мощности, выбрать оптимальный уровень энергопотребления для различных технологических режимов или суточного/недельного графика, управлять компенсирующими установками реактивной энергии и др.
3.По результатам анализа энергопотребления при использовании современных СУБД можно составлять энергобалансы на год, 5 лет, перспективу с целью определения потребности в энергии для предприятия в целом, проводить анализ эффективности использования энергоресурсов, выявлять расходы и потери, находить норму расхода энергии на единицу продукции и обеспечивать снижение энергопотребление.
По назначению АСКУЭ предприятия подразделяют на:
Коммерческий учет является обязательным по закону при обеспечении взаимных финансовых расчетов с поставщиком энергоресурсов.
Технический учёт не является обязательным по закону. Основное его назначение - учет, контроль и управление потреблением энергоресурсов по всей иерархии предприятия вплоть(в идеале) до рабочего места или токо(энерго)приемника.
Коммерческий и технический учёт поставки/потребления энергоресурсов позволяет экономически обоснованно разрабатывать и осуществлять комплекс мероприятий по энергосбережению, своевременно его корректировать, обеспечивая динамическую оптимизацию затрат на энергоресурсы в условиях изменяющейся экономической среды.
В структуре АСКУЭ можно выделить 4 уровня:
1 уровень: первичные измерительные приборы (ПИП) с телеметрическими или цифровыми выходами осуществляют измерение параметров учета энергопотребления;
2 уровень: устр-ва сбора и подготовки данных (УСПД), специал-ые измерительные системы или многофункциональные программируемые преобразователи со встроенным программным обеспечением энергоучёта осущ-ют круглосуточный сбор измерительных данных с территориально распределённых ПИП, накопление, обработку и передачу этих данных на верхние уровни;
3 уровень: персональный компьютер (ПК) или сервер центра сбора и обработки данных со специализированным программным обеспечением АСКУЭ осуществляет сбор информации с УСПД, итоговую обработку этой информации как по точкам учёта, так и по их группам - по подразделениям и объектам предприятия, документирование и отображение данных учёта в виде, удобном для анализа и принятия решений оперативным персоналом службы главного энергетика и руководством предприятия;
4 уровень: сервер центра сбора и обработки данных со специал-ым программным обеспечением АСКУЭ, осуществляющий сбор информации с ПК и/или группы серверов центров сбора и обработки данных третьего уровня, дополнительное агрегирование и структурирование информации по группам объектов учёта, документирование и отображение данных учёта в виде, удобном для анализа и принятия решений персоналом службы главного энергетика и руководством территориально распределённых средних и крупных предприятий или энергосистем, ведение договоров на поставку энергоресурсов и формирование платёжных документов для расчетов за энергоресурсы.
Все уровни АСКУЭ связаны между собой каналами связи.
Короче, раньше было "ручное" списывания показаний с индукционного или электронного счетчика, а на данный момент внедряются автоматизированные системы учета и управления электроэнергией в промышленности, ведутся работы по внедрению автоматизированных систем коммерческого учета электрической энергии (АСКУЭ) в бытовом секторе энергопотребления. Энергетические компании уже готовы воспользоваться широким спектром информации, которую способны дать электронные средства учета электроэнергии, однако не имеют достаточных средств для инвестиций.
Все крупные промышленные предприятия применяют коммерческий учет не только для учета потребленной электроэнергии, но и для учета заявленной потребленной мощности. Возникает необходимость в переходе на расчеты по дифференцированным тарифам, что возможно только при использовании сертифицированной АСКУЭ. Последнее подразумевает, что все средства сбора и передачи информации должны быть зарегистрированы в Государственном реестре средств измерений.