Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика,Умк.docx
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
188.71 Кб
Скачать

Тема 5. Дифференциальные уравнения (2 часа)

Определение обыкновенного дифференциального уравнения (ОДУ) n-го порядка. Задача Коши. Понятия решения, общего решения, частного решения ОДУ, интегральной кривой.

ОДУ 1-го порядка. Общее, частное решение. Общий интеграл. Зада­ча Коши. Условие существования и единственности решения. Качест­венное исследование ДУ 1-го порядка. Изоклины, поле направлений. Уравнения с разделяющимися переменными. Модель естественного рос­та производства. Линейные ДУ и уравнение Бернулли. Решение методом вариации произвольной постоянной. Рост производства в условиях кон­куренции. Однородные ДУ. Модель изменения макроэкономических по­казателей (типа Солоу). Уравнения, приводящиеся к однородным. ДУ старших порядков, интегрируемые различными методами понижения порядка.

ОДУ n-го и 2-го порядка. Однородное линейное ДУ с постоянными коэффициентами. Вид частного решения. Характеристическое уравне­ние. Вид общего решения для различных случаев комплексных и дейст­вительных корней характеристического уравнения однородного линей­ного ДУ с постоянными коэффициентами 2-го порядка. Вид общего ре­шения однородного и неоднородного линейного ДУ с постоянными коэффициентами n-го и 2-го порядка. Нахождение частного решения не­однородного линейного ДУ по виду правой части и методом вариаций произвольных постоянных. Примеры. Динамическая модель рынка с прогнозируемыми ценами. Влияние внешнего периодического возму­щения на линейные колебания динамических систем. Амплитудно-час­тотная характеристика. Резонанс.

2.2. Типовые планы практических и/или семинарских занятий

Тема 1. Элементы аналитической геометрии (4 часа)

  1. Прямая на плоскости. Кривые второго порядка (практическое за­нятие).

Вопросы по теме:

Различные виды уравнения прямой на плоскости (с угловым коэф­фициентом, общее, проходящее через данную точку, через две данные точки, в отрезках, нормальное). Угол между двумя прямыми. Взаимное расположение двух прямых. Условие параллельности и перпендикуляр­ности двух прямых. Расстояние от точки до прямой.

Окружность. Определение. Общее уравнение. Условия существова­ния. Эллипс. Определение. Исследование формы. Эксцентриситет. Фо­кусы. Полуоси. Гипербола. Определение. Исследование формы. Асим­птоты. Фокусы. Эксцентриситет. Полуоси. Сопряженные гиперболы. Парабола. Определение. Директриса. Фокус. Параметр параболы. Вер­шина, направление ветвей параболы. Полярное уравнение кривых второго порядка. Геометрическое истолкование.

  1. Исследование общего уравнения кривых второго порядка (прак­тическое занятие).

Вопросы по теме:

Общее уравнение линий второго порядка. Ортогональное разложе­ние матриц. Собственные значения и собственные векторы. Исследова­ние общего уравнения линий второго порядка (приведение к канониче­скому виду). Примеры линий, уравнения которых являются уравнениями второго порядка.

Лабораторная работа № 1. Кривые второго порядка.

  1. Аналитическая геометрия в пространстве (практическое занятие).

Вопросы по теме:

Определения свободного геометрического вектора, радиус-вектора, па­раллельного, противоположного, нулевого вектора. Действия над вектора­ми (сложение, вычитание, умножение на число). Координаты вектора. Пря­моугольная декартова система координат. Три формы задания вектора. Ли­нейные операции над векторами в координатной форме. Длина вектора.

Направляющий вектор (вектор направляющих косинусов, орт вектора). Ко­ординаты вектора, заданного координатами точек его начала и конца.

Скалярное произведение векторов. Определение. Свойства. Запись в координатной форме. Условие ортогональности векторов. Угол между векторами.

Векторное произведение векторов. Определение. Свойства. Запись в координатной форме. Условие коллинеарности векторов.

Смешанное произведение. Свойства. Геометрический смысл. Объем параллелепипеда, пирамиды. Условие компланарности трех векторов.

Различные виды уравнений плоскости в пространстве (нормальное, общее, проходящее через заданную точку, через 3 точки, в отрезках). Рас­стояние от точки до плоскости. Нормаль к плоскости. Угол между плоско­стями. Условия параллельности и перпендикулярности плоскостей.

Различные виды уравнения прямых в пространстве (общее, канони­ческое, параметрическое, проходящей через данную точку, через две данные точки). Направление прямой. Условия параллельности и перпен­дикулярности прямых и прямой и плоскости.

Контрольная работа № 1. Аналитическая геометрия на плоско­сти и в пространстве.