
- •Введение
- •1. Общие вопросы электромагнитной совместимости. Основные понятия и определения
- •1.1. Понятие электромагнитной совместимости
- •1.2. Электромагнитные влияния, помехоустойчивость, помехоподавление
- •1.3. Уровни электромагнитных помех
- •1.5. Учет пути передачи помех или связи между источником и приемником помех
- •1.6. Экономические аспекты электромагнитной совместимости
- •1.7. Европейский рынок средств электромагнитной совместимости
- •1.8. Цели и основное содержание работ в области электромагнитной совместимости
- •Вопросы для самоподготовки
- •2. Нормирование электромагнитных полей
- •2.1. Нормы и рекомендации по электромагнитной совместимости
- •2.2. Санитарно-гигиеническое нормирование электромагнитных полей
- •Допустимые уровни напряжённости магнитного и электрического полей
- •2.3. Допустимые уровни и степени радиопомех
- •2.4. Классификация электромагнитной обстановки окружающей среды электротехнических и энергетических установок
- •Классификация электромагнитной обстановки окружающей среды по импульсным помехам
- •2.5. Нормы и степени жесткости основных видов испытаний на помехоустойчивость устройств электростанций и подстанций
- •Степени жесткости и нормируемые уровни испытаний при воздействии магнитным полем промышленной частоты
- •Степени жесткости и нормируемые уровни испытаний при воздействии импульсным магнитным полем
- •Степени жесткости и нормируемые уровни испытаний при воздействии затухающим колебательным магнитным поле
- •Степени жесткости и нормируемые уровни испытаний при воздействии импульсом напряжения 1/50 мкс (1,2/50 мкс)
- •Степени жесткости и нормируемые уровни испытаний при воздействии радиочастотным электромагнитным полем в диапазоне частот от 80 до 1000 мГц
- •Степени жесткости и нормируемые уровни испытаний при воздействии радиочастотным электромагнитным полем в диапазоне частот от 800 до 960 мГц и от 1,4 до 2 гГц
- •Примеры степеней жесткости испытаний и соответствующих защитных расстояний
- •Степени жесткости испытаний в полосе частот от 150 кГц до 80 мГц
- •Степени жесткости испытаний на помехоустойчивость при воздействии длительных помех постоянного тока и на частоте 50 Гц
- •Степени жесткости испытаний на помехоустойчивость при воздействии кратковременных помех постоянного тока и на частоте 50 Гц
- •Степени жесткости испытаний на помехоустойчивость при воздействии длительных помех в полосе частот от 15 Гц до 150 кГц
- •2.6. Нормирование кондуктивных помех в виде показателей качества электрической энергии
- •Нормы пкэ и допустимые погрешности их измерения
- •Значения коэффициента искажения синусоидальности кривой напряжения
- •Значение коэффициента n-й гармонической составляющей напряжения
- •Значения коммутационных импульсных напряжений
- •Характеристики временных перенапряжений
- •Вопросы для самоподготовки
- •3. Источники и влияние электромагнитных полей
- •3.1. Виды источников электромагнитных полей
- •3.2. Общая классификация источников электромагнитных полей
- •3.3. Источники и влияние узкополосных электромагнитных полей
- •3.3.1. Влияние линий электропередачи в виде узкополосного источника электромагнитных полей
- •3.3.2. Влияние генераторов высокой частоты
- •3.3.3. Влияние радиоприемников, компьютеров, вычислительных систем и коммутационных устройств
- •3.4. Источники и влияние широкополосных электромагнитных полей
- •3.4.1. Влияние воздушных линий высокого напряжения
- •3.4.2. Влияние газоразрядных ламп
- •3.4.3. Источники и влияние электромагнитных полей в городах
- •Вопросы для самоподготовки
- •4. Источники электромагнитных помех в электроэнергетике
- •4.1. Классификация источников электромагнитных помех в энергетических установках и средствах автоматизации
- •4.2. Грозовой разряд как внешний источник электромагнитных помех
- •Характеристики воздействия молнии на объекты
- •4.3. Внутренние источники электромагнитных помех
- •4.4. Электротехнические электромагнитные помехи
- •Приблизительные значения напряженностей магнитного поля промышленной частоты на энергетических и промышленных предприятиях
- •Характерные напряженности электрического поля в промышленных условиях
- •Характерные напряженности электрического поля электротехнических установок
- •4.5. Электромагнитные помехи в системах автоматики, в линиях связи и передачи данных
- •Вопросы для самоподготовки
- •5. Биологическое влияние электромагнитного поля на человека и окружающую среду
- •5.1. Общие положения
- •5.2. Биологическое влияние электромагнитного поля линий электропередачи
- •5.3. Биологическое влияние источников электромагнитных полей в жилых помещениях
- •Уровни электрических и магнитных полей промышленной частоты 50 Гц от различных электроприборов
- •Распространение магнитного поля промышленной частоты от бытовых электрических приборов (выше уровня 0,2 мкТл)
- •5.4. Источники и характеристики электромагнитных полей на рабочем месте с компьютером и их воздействие на человека
- •5.5. Биологическое воздействие сотовой радиотелефонной связи
- •Краткие технические характеристики стандартов системы сотовой радиосвязи, действующих в России
- •Вопросы для самоподготовки
- •6. Помехоустойчивость чувствительных элементов в устройствах электроэнергетики
- •6.1. Общие положения
- •Импульсные напряжения пробоя внутренней или перекрытия внешней изоляции электротехнических установок напряжением до 1000 в и электронных приборов
- •Помехоустойчивость некоторых устройств автоматики и вычислительной техники при воздействии магнитного поля частотой 50 Гц
- •Значения допустимых напряжений статического электричества, приводящих к повреждению полупроводниковых элементов
- •6.2. Помехоустойчивость устройств автоматизации
- •Виды испытательных помех при испытаниях на внешнюю помехоустойчивость
- •6.3. Требования к помехоустойчивости
- •Рекомендации по обеспечению помехоустойчивости приборов в зависимости от вида помех и мест установки приборов
- •Вопросы для самоподготовки
- •7. Мероприятия по защите от влияния электромагнитных полей и обеспечение электромагнитной совместимости
- •7.1. Мероприятия по защите от влияния электромагнитных полей линий электропередачи
- •7.2. Основные мероприятия по обеспечению электромагнитной совместимости в энергетических установках и устройствах автоматизации
- •7.3. Мероприятия по обеспечению электромагнитной совместимости в системах электропитания
- •7.5. Повышение электромагнитной совместимости устройств автоматизации с помощью заземляющих устройств
- •7.6. Мероприятия по снижению влияния разрядов статического электричества
- •7.7. Мероприятия по снижению влияния электромагнитного излучения
- •7.8. Организационные мероприятия по обеспечению электромагнитной совместимости
- •Вопросы для самоподготовки
- •Библиографический список
- •Оглавление
- •1. Общие вопросы электромагнитной совместимости. Основные понятия и определения 5
- •2. Нормирование электромагнитных полей 33
- •Электромагнитная совместимость в электроэнергетике (источники электромагнитных полей и их влияние)
- •443100, Г. Самара, ул. Молодогвардейская, 244. Главный корпус
- •443100, Г. Самара, ул. Молодогвардейская, 244, корпус №8
3.2. Общая классификация источников электромагнитных полей
Источники электромагнитной энергии классифицируются, в основном, по их проявлению в диапазоне частот, иными словами, по излучаемому ими высокочастотному спектру.
Различают узкополосные и широкополосные источники полей (помех), как показано на рис. 3.1.
Сигнал считается узкополосным, если его спектр (ширина спектральной линии) меньше ширины полосы приемника.
Источники узкополосных помех являются искусственно созданными человеком. Это, например радиопередатчики, которые на предоставленных им частотах излучают больше мощности, чем допустимо, любительские радиопередатчики, устройства, излучающие высшие гармоники, возникающие вследствие нелинейности элементов передатчиков, медицинские и промышленные высокочастотные генераторы или просто электросеть частотой 50 Гц.
Такие источники характеризуются амплитудой или действующим значением помехи при соответствующей частоте (линейчатый спектр).
Р и с. 3.1. Разделение передатчиков электромагнитной энергии на узкополосные и широкополосные источники
Сигнал считается широкополосным, если его спектр простирается на ширину полосы, большую чем ширина полосы определенной приемной системы. Источники широкополосных помех характеризуются спектром с очень плотно или даже бесконечно близко расположенными друг к другу спектральными линиями (непрерывный спектр, плотность распределения амплитуд). Типичные представители широкополосных помех – это естественные помехи (например, космический шум), а также все непериодические переходные процессы.
Источники широкополосных помех целесообразно подразделить также на источники шумовых и переходных помех. Шумовые помехи состоят из многих, вплотную соседствующих или перекрывающихся импульсов различной амплитуды, которые нельзя разделить. Переходные помехи четко различимы одна от другой и обладают сравнительно малой степенью повторяемости, проявляются в виде импульсов. Переходные помехи могут быть распределены статистически, например, при короне на воздушной линии, быть периодическими, например, в цепях фазовой отсечки тиристорных устройств или непериодическими, например, при выключении катушек реле.
Классическая электромагнитная совместимость, главной целью которой был контроль радиопомех, и современная интерпретация электромагнитной совместимости существенно различаются [2]. Согласно первой, вполне могут быть допущены отдельные переходные импульсные помехи, т. е. одноразовые или редко повторяющиеся помехи в виде импульсов, в то время как при определенных обстоятельствах однократный импульс помехи в устройствах управления электростанцией может привести к дорогостоящим простоям, а в авиационных и космических устройствах – к тяжелым последствиям.
Источники периодических несинусоидальных помех, например сети вентильных преобразователей тока с линейчатым спектром высших гармоник, являются в зависимости от ширины полосы приемника узкополосными или широкополосными источниками, так как одна или несколько линий спектра могут быть расположены внутри полосы приемника. Широкополосные сигналы следует различать и по когерентности. При когерентных широкополосных сигналах реакция приемника пропорциональна ширине его полосы. Для некогерентных сигналов, спектральные составляющие которых соотносятся произвольно, реакция приемника пропорциональна квадратному корню ширины его полосы.
Для узкополосных сигналов вышеприведенные различия становятся излишними. До тех пор, пока спектр сигнала четко расположен внутри полосы приемника, реакция приемника остается постоянной. Ранее широкополосные помехи представлялись только как временные функции (например, в виде осциллограммы), которые не позволяют непосредственно определить действие помехи в диапазоне частот. Однако при помощи преобразования Фурье функции могут быть переведены из временной в частотную область. На практике для этого чаще всего пользуются ЭМС-номограммой.
Шумовые помехи (например, рябь на экране телевизора, космические шумы) нельзя определенно описать аналитическими временными функциями. Они проявляют себя как результат многих, не поддающихся индивидуальному анализу отдельных помех. В совокупности шумовые помехи следуют определенным статистическим закономерностям.