Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
24
Добавлен:
02.05.2014
Размер:
719.87 Кб
Скачать

8. Понятие об эл.Мех и мех. Хар-ках двигателей и режим работы эмп

В электрическом двигателе осуществляется связь механического движения привода и механизма с электрическими процессами в системе управления приводом и наоборот, которая объединяет механическую и электрическую часть электропривода в единую электромеханическую систему. Различные проявления этой связи называют электромеханической связью.

Представим уравнения электрического равновесия в следующем виде (после подстановки L и дифференцирования):

.

Здесь ; второй член уравнения – результирующая ЭДС самоиндукции и взаимной индукции вызванная изменением токов в обмотках в результате вращения ротора.

ЭДС вращения зависит от скорости движения ротора. Изменение этой скорости, вызванное процессами механической части эл.привода, вызывает изменение токов в обмотках. Это явление и представляет собой электромеханическую связь, вследствие которой при питании двигателя от источника напряжения существует зависимость токов силовой цепи электропривода от его скорости. Т.к. токи ii благодаря этой связи зависят от скорости ротора двигателя, то и его электромагнитный момент М также зависит от скорости. Связь эта характеризуется зависимостями:

или

или

Первые зависимости являются электромеханическими, а вторые – механическими характеристиками двигателя.

Уравнения электрического равновесия, записанные выше для Ui, выражают связь между функциями ив динамических процессах электромеханического преобразования энергии и представляет собой обобщенное математическое описание эл.механических характеристик двигателя во всех режимах работы. Поэтому они являются уравнениями электромеханической характеристики двигателя.

Статические электромеханические и механические характеристики не позволяют судить о электромеханических свойствах двигателя и электропривода в динамических режимах, т.к. жесткая и даже абсолютно жесткая статическая характеристика в в установившемся динамическом режиме работы электропривода превращается в мягкую или имеющую переменную жесткость. Поэтому для суждения о жесткости механической характеристик двигателя или электропривода в динамических режимах используется понятие динамической жесткости. Модуль динамической жесткости определяется как отношение амплитуд установившихся гармонических колебаний момента и угловой скорости относительно средних значений. приg 0.

В операторной форме:

Это выражение свидетельствует о том, что g представляет собой передаточную функцию ЭМП, если входным параметром принять скорость двигателя (), а выходным – электромагнитный момент М().

Рассмотрим теперь возможные режимы работы ЭМП и ограничения, накладываемые на протекание этих режимов.

Основным режимом работы ЭМП и двигателя является двигательный при котором мощность Рс, потребляемая из сети, в основном преобразуется в механическую Рмех, а остальная часть Р теряется в виде тепла в обмотках и стали машины.

К тормозным режимам относятся режимы:

а) рекуперативного торможения;

б) противовключение;

в) динамического торможения.

Все тормозные режимы являются генераторными.

9. Координатные преобразования уравнений обобщенной машины

Система уравнений описывающих процессы электромеханического преобразования энергии

нелинейна, т.к. содержит произведения переменных (iij) и (iiij), а также переменные коэффициенты собственных и взаимных индуктивностей. Поэтому она неудобна для практического использования. Ее можно преобразовать путем замены действительных переменных фиктивными переменными при условии сохранения одинаковости математического описания и сохранения неизменной мощности.

Коэффициенты самоиндукции и взаимоиндукции зависят от угла поворота ротора машин, т.е. от углового взаимного положения обмоток статора и ротора. Чтобы они были постоянными и не зависели от угла поворота осей ротораd,q относительно осей , статора, желательно, чтобы обмотки обобщенной машины 1 и 2d, а также 1и 2q были неподвижны относительно друг друга. Для этого изобразим еще оси u,v на схеме обобщенной машины, которые вращаются в пространстве с угловой скоростью к.

На этих осях располагаем расчетные обмотки (физически этих обмоток нет) статора и ротора. Считаем что эти обмотки создают такие же МДС, что и реальные обмотки. Коэффициенты самоиндукции в этом случае будут постоянными, т.к. обмотки неподвижны друг относительно друга.

Сделаем преобразования реальных переменных, соответствующих обмоткам, расположенными на осях ,,d,q к фиктивным переменным, соответствующим расположению обмоток на осях u,v: Преобразования делаем только для обмоток статора, ибо для обмоток ротора преобразования аналогичны.

Представляем каждую реальную переменную (i,u,) в виде вектора Х, являющимся геометрической суммой мгновенных векторов этой переменной. Пусть некоторая переменная в виде вектора Х, соответствует току, или напряжению, или потокосцеплению статора.

электрического равновесия и уравнениях потокосцеплений с помощью формул преобразований заменим все реальные переменные, выразив их в осях u,v. Для пояснения сущности ограничимся только преобразованием уравнений равновесия для цепи статора, т.к. для ротора преобразования будут аналогичными. С этой целью подставляем выражения реальных переменных в уравнения обратного преобразования:

В результате получим:

Продифференцировав произведения  на тригонометрические функции угловой координаты, умножим 1-е из полученных уравнений на , а 2-е – наи складываем полученные уравнения. После приведения подобных членов получим уравнение равновесия для осиU. Умножая, затем 1-е из ранее полученных уравнений на -, а 2-е – наи выполнив аналогичные операции, что и в первом случае, получим уравнение электрического равновесия для осиV.

Аналогично можно получить преобразованные уравнения электрического равновесия для цепи ротора. В результате система уравнений электромеханической характеристики обобщенной машины будет иметь вид:

,

где ;, а 3-ие слагаемые в правых частях уравнений – это ЭДС вращения.

Аналогично можно получить преобразованные уравнения потокосцеплений: Но проще их можно написать исходя из физического смысла и пользуясь следующей схемой обобщенной машины.

Потокосцепление каждой обмотки определяется собственной индуктивностью L1 или L2 и взаимной индуктивностью L12 с другой обмоткой, расположенной на той же оси. Взаимодействие с токами других обмоток отсутствует, т.к. их оси сдвинуты на эл=90, т.о.

Соседние файлы в папке Шпоры по ЭМС [3 курс 6 семестр]