Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Шпоры по ЭМС [3 курс 6 семестр] / Вторая сторона3

.doc
Скачиваний:
22
Добавлен:
02.05.2014
Размер:
655.87 Кб
Скачать

при ω=0 действие реактивного Мс прекратится, и т.к. момент двигателя тоже станет равным 0, система остановится. Процесс будет протекать так, как если ω стремилась стать =-ωс , но прекратится при ω=0. Поэтому соответствующие отрезки кривых на графике изображены пунктиром.

CD, достигает скорости идеального холостого хода (-ω0) и т.к. момент сопротивления активный, переходит в генераторный режим с отдачей энергии в сеть (линия DE). Равновесие наступит в т.Е, где М=Мс и скорость ω=ωс .Такой процесс может быть, если в случае подъема тяжелого груза двигатель тормозится противовключением и при ω=0 не отключается и не затормаживается механическими тормозами. При реактивном моменте сопротивления процесс разбивается на два этапа. На первом этапе, являющемся тормозным, законы изменения ω и М описываются теми же уравнениями что и при активном Мc. Время торможения до ω=0 , где - ωс- фиктивная скорость, к которой стремиться двигатель. На втором этапе происходит разгон в противоположном направлении (после торможения противовключением и остановки). Знак Мс меняется на противоположный. Уравнения, описывающие переходный процесс будут иметь такой же вид, как для пуска двигателя, только ωнач =0, Мнач=-Мп и ωс=-ωс`,т.е. (1) ;

(2) Здесь Мп- пусковой момент.

Время реверса . При переходе скорости через 0 динамический момент Мдин скачком изменяется от значения Мдин=-(Мпс) до Мдин=-(Мпс) , что вызывает изменение ускорения и в кривых ω=f(t) и M=f(t) появляется излом. При динамическом торможении законы изменения ω и М описываются теми же урав-ми, что и для реверса,т.е.(1) и (2) где ωс- установившаяся скорость, определяемая точкой пересечения механической характ

неподвижного состояния, т.е. когда нач=0 , то

Время разгона на любом участке процесса до какой либо промежуточной скорости кон

Т.к. кон=c , то . Практически процесс считается закончившимся, когда разность между установившимся и текущим значением снижается до 2%, т.е. или При нач=0 кон=0,98с . поэтому

Обычно принимается t=(3-4)Tм. Величину Тм можно определить проведя касательную в любой точке кривой (t) или М(t), например, в начале координат, как показано на графиках или используя следующие выражения

Для расчета переходного процесса при многоступенчатом пуске сначала строится пусковая диаграмма по ранее изложенным правилам задавшись пусковым и переключающим моментами. Для любой ступени разгона время, в течение которого момент изменяется от М1 до М2 может быть определено по формуле

Постоянная времени для любой ступени разгона

Т.к в асинхронных двигателях R1R`2, то и

Отсюда уравнение механической характеристики АД, называемое формулой Клосса:

или при R1=R2

Определив по паспортным данным SKP:

,где

- номинальное скольжение АД, - перегрузочная способность АД, можно, задаваясь различными значениями скольжение S, построить естественную механическую характеристику двигателя во всем возможном диапазоне изменения скольжения. На графике приведены естественные характеристики для прямого и обратного действия эл.магнитного момента.

Если пренебречь активным сопротивлением R1 обмотки статора, то =0 и упрощенное выражение механической характеристики АД примет вид

.

В значительном числе случаев работа АД нормально протекает при S от 0 до (1,21,5)SH, т.е. при S<(0,4­­0,35)SKP. Это обстоятельство позволяет в упрощенном уравнении механической характеристики пренебречь отношением , которое в 8-10 раз меньше . В этом случае механическая характеристика АД может быть представлена

т.о.

и

Где L1 и L2 - индуктивности рассеяния статорной и роторной обмоток. Параметры L1, L2,L12 двухфазной модели выразим через каталожные параметры реального трехфазного двигателя с помощью соотношений: ; ; , а с помощью ранее полученных формул обратного преобразования заменим переменные двухфазной модели соответствующими эффективными значениями переменных трехфазного двигателя. Тогда уравнения электрического равновесия примут вид:

.

Поделив обе части на , получим

, или ,

где ; ; ; ;

Э тим уравнениям соответствует Т-образная схема замещения, известная из курса эл.машин и упрощенная Г-образная схема.

Отсюда , где

При закон изменения потока будет таким же . Это экспонента.

Для расчета строится кривая φ=f(t) и разбивается на участки постоянной длительности. На каждом участке длительностью ∆t поток Ф считается постоянным, равным среднему значению . Аналогично скорость двигателя в течении ∆t считаем постоянной и равной среднему значению

Подставив значения и в уравнение 3 , решаем его относительно Окончательная расчетная формула имеет вид Расчет кривой скорости ведется с первого участка длительностью ∆t, для которого известна и среднее значение потока . Приращение скорости на первом участке

Начальная скорость на втором участке длительностью ∆t равна скорости в конце первого участка, т.е. . Аналогично определяется приращение скорости на втором участке и т.д. По рассчитанным приращениям строится кривая =f(t), которая изображена на графике.

Для нахождения закона изменения тока JЯ в переходном режиме разделим обе части уравнения 1 на U

отсюда

Конечное значение тока якоря

или

При t=0 ω 0= ω 0 нач, следовательно откуда

.

Окончательно закон изменения скорости

Закон изменения момента в переходном режиме находится аналогично

.отсюда

Используя эти выражения, исследуем переходные процессы при различных режимах и различных по характеру моментах сопротивления.

Торможение с отдачей энергии в сеть используется в подъемно-транспортных установках, при спуске тяжелых грузов. Под действием груза ротор машины будет вращаться со скоростью >0, машина переходит в генераторный режим и начинает создавать тормозной момент. При равенстве M=Mc груз будет опускаться с установившейся скоростью c, как показано на рисунке. Необходимо иметь в виду, что для обеспечения нормального спуска груза Mc не должен превышать критический момент в генераторном режиме. При реактивном моменте сопротивления кратковременно режим с рекуперацией энергии в сеть можно получить, если АД допускает переключение обмотки статора с одной пары полюсов на другую, как показано на приведенном графике.

Режим с рекуперацией имеет место на участке ВС после переключения обмотки статора с числа пар полюсов П=1 на П=2 .

б) торможение противовключением.

В режиме противовключения ротор двигателя вращается в направлении, противоположном действию момента двигателя. Его скольжение S>1, а частота тока в роторе больше частоты питающей сети (). Поэтому несмотря на то, что ток ротора больше номинального в 7 –9 раз, т.е. больше пускового тока, момент в следствие большой частоты тока, следовательно большого индуктивного сопротивления роторной цепи (), будет невелик. Поэтому для увеличения момента и одновременного уменьшения тока в цепь ротора включают большое добавочное сопротивление, величину которого можно подсчитать по выражению

Где Е20 - номинальная ЭДС ротора при S=1

Sн – номинальное скольжение

Sн и – скольжение при номинальной нагрузке на искусственной характеристике.

выглядеть так, как изображено на рисунке. Видно, что при изменении напряжения только в функции частоты по закону при частотах, меньших 0,5 f перегрузочная способность двигателя будет уменьшаться. Это объясняется влиянием падения напряжения на активном сопротивлении обмотки статора, которое приводит к уменьшению напряжения на намагничивающем контуре обмотки статора, к уменьшению магнитного потока и следовательно, к уменьшению критического момента двигателя.

действуют по направлению вращения и уменьшением числа проводников, на которые электромагнитные силы действуют против направления вращения). Семейство механических характеристик двигателя, соответствующих разным по величине Rдаб , введенным в цепь ротора , изображено на рисунке.

4. Изменение частоты питающей сети.

При изменении частоты питающей сети и Uсети=U1=const, меняется ω0=и критический момент, так как он зависит от частоты обратно пропорционально её квадрату. Изменяется и магнитный поток, при чём он уменьшается с ростом частоты и увеличивается при её уменьшении. Это видно из уравнения равновесия ЭДС для одной фазы статора: . Пренебрегая падением напряжения в цепи статора, можно написать для абсолютных значений ЭДС и напряжения при U1=const.

.

Отсюда видно, что при росте f1 поток уменьшается, а при уменьшении f1 он растет. Этим объясняется и изменение критического момента двигателя и его перегрузочной способности.

Увеличение потока ведет к насыщению магнитной цепи машины, увеличению намагничивающего тока, следствием чего является ухудшение энергетических показателей двигателя. Уменьшение потока при постоянном моменте нагрузки приведет к увеличению тока ротора, что видно из выражения , и потребляемого из сети тока, следовательно, к перегрузке обмоток двигателя при недоиспользованной стали. В обоих случаях изменяется перегрузочная способность двигателя. Поэтому для наилучшего использования двигателя желательно всегда поток иметь постоянным. Для этого при изменении частоты необходимо изменять и величину подводимого напряжения, причем не только в функции частоты, но и в функции нагрузки. В простейшем же случае при изменении напряжения в той же степени, что и частоты, т.е. при , механические характеристики будут

Для номинального режима: ; , следовательно, подставляя 3r2’ в выражение для I2’, получим уравнение электромеханической характеристики:

При пренебрежении величиной R1, имеем =0 и .

З адаваясь величиной S, получим графическую зависимость , т.е. электромеханическую характеристику АД. Она изображена на рис.

при S стремящемся к бесконечности.

нибудь искусственную характеристику и данные о соответствующей ей величине RДОБ.

При введении в цепь ротора RДОБ МКР не изменяется, а лишь смещается в сторону больших скольжений. SКР возрастает. Величина не изменяется.

Напишем выражения для естественной и искусственной характеристик, соответствующих одинаковым моментам, т.е. Ме = Ми = М. Этим моментам соответствуют скольжения Se и Su , а критическому моменту МКР – скольжения Sке и Sки. ,

отсюда

Это равенство может иметь место только при условии . Тогда

Полученные соотношения справедливы и для случая равенства критических и номинальных моментов, т.е. ; .

Порядок расчета искусственной характеристики такой: задаваясь скольжением на исходной (например, естественной) характеристике с помощью приведенного соотношения для Su, находится величина Su на искусственной характеристике, соответствующая тому же значению момента. Таким образом, по точкам может быть построена вся искомая характеристика.

Расчет можно вести и по формуле Клосса упрощенной или для простейшего случая, когда характеристика считается линейной. В этих случаях нужно в соответствующую формулу Клосса подставлять скольжение, найденное по вышеприведенным соотношениям для заданного добавочного сопротивления, а затем вести расчет как говорилось о расчете естественной характеристики.

Если сопротивление ротора неизвестно, его можно найти исходя из паспортных данных двигателя. Действительно, т.к. номинальные потери в роторной цепи

, то .

Активные сопротивления фазы статора приближенно можно определить по формуле

; ,

где ксх =1 при соединении обмотки статора в ∆ и ксх=3 при соединении в звезду.

момент. Двигатель превращается в синхронный генератор с неявновыраженными полюсами, работающий при переменной скорости.

Симметричное включение 3-х обмоток статора в сеть постоянного тока невозможно без их переключений. Обычно используется одна из схем, приведенных на рис.

Поскольку при питании постоянным током обмотки обладают только омическим сопротивлением, для получения нужного значения тока достаточно небольшого по величине напряжения. В качестве источника постоянного тока для двигателей небольшой и средней мощности испльзуются полупроводниковые выпрямители, а для крупных двигателей могут использоваться специальные генераторы постоянного тока низкого напряжения.

Соседние файлы в папке Шпоры по ЭМС [3 курс 6 семестр]