
- •Предмет и задачи метрологии
- •Законодательная метрология
- •2.1 Государственное законодательство по обеспечению единства измерений
- •2.2 Государственная система метрологического обеспечения
- •Типовая структура метрологической службы промышленного предприятия
- •2.4 Международные метрологические организации
- •2.4.1 Международная организация мер и весов (момв)
- •2.4.2 Международная организация законодательной метрологии (мозм)
- •2.4.3 Другие международные организации
- •2.4.4 Межгосударственная координация по метрологии в снг
- •3 Информационная характеристика процесса измерения
- •4 Физические величины и их шкалы
- •4.1 Понятие шкалы реперов измеряемой величины
- •4.2 Определение наиболее распространенных шкал
- •4.4 Правила написания обозначение единиц
- •5 Погрешности измерений
- •5.1 Причины погрешностей
- •5.2 Обозначение погрешности
- •5.3 Классификация погрешностей
- •5.4 Оценка случайных погрешностей
- •5.5 Суммирование погрешностей
- •6. Общие правила выполнения измерения
- •6.1 Организация измерений
- •6.2. Учет систематических погрешностей и способы их уменьшения
- •6.3 Обработка результатов измерения
- •6.4 Форма представления и интерпретация результатов измерения
- •7 Метрологическая аттестация
- •7.1 Аттестация, поверка и испытания средств измерения
- •7.2 Сертификация средств измерений
- •8 Методы и средства для измерения электрических величин
- •8.1 Условные обозначения на шкалах приборов
- •8.2 Системы измерительных приборов
- •8.2.1 Магнитоэлектрические механизмы
- •8.2.2 Электродинамические механизмы
- •8.2.3 Электромагнитные механизмы
- •8.2.4 Электростатические механизмы
- •8.2.5 Выпрямительные приборы
- •8.2.6 Термоэлектрические приборы
- •8.3 Электронные приборы
- •8.3.1 Электронные вольтметры
- •8.3.2 Электронные омметры
- •8.3.3 Электронно-лучевые осциллографы
- •8.4 Мостовые и компенсационные измерительные схемы
- •8.4.1 Мостовые измерительные цепи
- •8.4.2 Компенсационные измерительные цепи
- •8.4.3 Автоматические мосты и компенсаторы
- •8.5 Цифровые приборы
- •8.5.1 Аналого-цифровые преобразователи
- •8.5.2 Цифровые вольтметры
- •8.5.3 Измерители частоты и интервалов времени
- •9 Измерение неэлектрических величин электрическими методами
- •9.1 Классификация измерительных преобразователей
- •9.2 Резистивные преобразователи
- •9.3 Электромагнитные преобразователи
- •9.4 Электростатические преобразователи
- •9.5 Тепловые преобразователи
8.2.6 Термоэлектрические приборы
Термоэлектрические приборы представляют собой сочетание магнитоэлектрического измерительного механизма с термоэлектрическим преобразователем. Термоэлектрический преобразователь позволяет использовать магнитоэлектрический механизм для измерения переменных токов и напряжений в широком диапазоне частот.
Термоэлектрический преобразователь состоит из проводника-нагревателя, по которому проходит измеряемый ток, и миниатюрной термопары. Нагреватель изготавливают из тонкой нихромовой или константановой проволоки, допускающей длительный нагрев. Термопара представляет собой пару электродов, изготовленных из различных металлов, соединенных одними концами. Место соединения нагревается нагревателем. В качестве электродов применяют пары металлов или сплавов, дающие большую термо ЭДС: хромель-копель, золото-палладий, платинородий. Величина термо ЭДС составляет примерно 50-60 мкВ на 1о С.
В контактных термопреобразователях (рис. 8.16, а) спай термопары приварен к нагревателю, а в бесконтактных (рис. 8.16, б) разделен изолятором (обычно бусинка стекла или керамики). Изоляция сплава обеспечивает гальваническую развязку цепи измеряемого тока и цепи измерительного механизма, но уменьшает чувствительность прибора, увеличивает и его инерционность. Бесконтактные термопреобразователи позволяют объединять термопары последовательно в термобатарею; при этом термо ЭДС возрастает пропорционально числу термопар (рис. 8.16, в).
E E Е
Ix Ix Ix
a) б) в)
Рис.8.16 - Термоэлектрические преобразователи:
а – контактный, б – бесконтактный, в – термобатарея.
Теплота, выделяемая электрическим током в проводнике нагревателя, в очень широком диапазоне не зависит от частоты, поэтому термоэлектрические приборы можно применять на постоянном и переменном токах, включая токи высокой частоты, когда приборы других систем не применяются.
Термо ЭДС, развиваемая термопреобразователем, пропорциональна количеству тепла, выделенного измеряемым током в месте спая, поэтому угол поворота подвижной части измерительного механизма пропорционален квадрату действующего значения тока, проходящего через нагреватель:
α ═ kIx2
На рис. 8.17 показана схема термоэлектрического амперметра и вольтметра. Для расширения пределов измерения термоэлектрических амперметров на высоких частотах используют специальные высокочастотные экранированные трансформаторы тока с сердечником из пермаллоя или феррита. Расширение пределов измерения вольтметров производится с помощью добавочных резисторов.
При измерении токов и напряжений для увеличения малой термо ЭДС используют в составе прибора усилитель постоянного тока. Таким образом снижают порог измерения тока до 100 мкА, а напряжения - до 75 мВ.
а) б) R
Ux
Ix
Рис.8.17 - Термоэлектрические приборы: а- амперметр, б – вольтметр.
Термоэлектрические контактные преобразователи из-за большой емкостной утечки на высоких частотах не применяются. Термоэлектрический амперметр всегда следует включать в такую точку измеряемой цепи, потенциал которой относительно земли близок к нулю. Это уменьшит погрешности измерения, вызванные токами утечки.
Достоинством термоэлектрических приборов является возможность работать в широком диапазоне частот и независимо от формы кривой тока.
Недостатками можно считать большую инерционность, большое потребление мощности, неравномерную шкалу, зависимость от температуры окружающей среды и плохую устойчивость к перегрузкам.
Серийные термоэлектрические приборы имеют классы точности 1,0 и 1,5. Они могут работать в диапазоне частот до 100 МГц.