Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Батенков В.А. Охрана биосферы

.pdf
Скачиваний:
63
Добавлен:
02.05.2014
Размер:
1.73 Mб
Скачать

хательных путей, эмфизема легких; сердечно-сосудистые заболевания; болезни глаз.

Примеры. СО соединяется с гемоглобином крови. При его концентрации больше 0,4% ухудшается острота зрения, при 2–5% происходит поражение психомоторных функций головного мозга, при 5–10% нарушается деятельность сердца и легких, а при 10% и больше наступает головная боль, спазмы, паралич легких, смерть. Оксиды серы SO2, SO3 и серная кислота также приводят к заболеваниям дыхательных путей и легких. Кислые дожди наносят большой вред растительности, часто губят ее на больших территориях, вдали от источников загрязнения. Оксиды азота и продукты их взаимодействия с углеводородами, типа пероксилацетилнитрата (ПАН) вызывают воспаление глаз, спазмы грудной клетки, сильный кашель.

Проблема озона О3. Считается, что слой озона в атмосфере на высоте 20–60 км служит щитом для живых организмов, предохраняя их от губительного жесткого ультрафиолетового излучения Солнца. Предполагают, что он сильно поглощает ультрафиолетовую радиацию с длинами волн 0,22–0,29 мкм (220–290 нм). Удель-

ное содержание О3 (ρозона/ρвозд.) 106 составляет в северном полуша-

рии от 0,029% (1961–1962 гг.) до 0,031% (1972–1974 гг.). В течение года максимум концентрации озона наблюдается весной, в апреле

(0,033–0,035%), а минимум осенью, в октябре (0,027%).

Циклическое изменение содержания озона объясняются: 11-летним циклом солнечной активности; циркуляцией атмосферы, которая приводит к переносу в высокие слои атмосферы оксидов азота, хлора, фреонов, а они катализируют процесс разложения О3 до О2. Однако здесь много неясного. Так, во-первых, молекулы указанных катализаторов в несколько раз тяжелее молекул воздуха (О2 и N2) и их подъем в высокие слои атмосферы маловероятен. Вовторых, на высоте более 20 км атмосфера очень разрежена, концентрация молекул воздуха весьма мала и встреча их и продуктов реакции с частицами катализатора – это исключительное событие. В-третьих, непонятен сам механизм фотохимической реакции ультрафиолета с молекулами озона, поскольку дальше атомы озона, в отличие от атомов кислорода, окисляться (терять электроны) не могут. В-четвертых, образование озонных дыр в полярных областях легко объяснить низким или полным отсутствием (в полярную ночь) потока солнечного ультрафиолетового излучения, вызываю-

51

щего генерацию озона из кислорода. Иными словами, ультрафиолетовое излучение скорее поглощает кислород, а не озон, и озоновые дыры никому не грозят.

2.4.3. Загрязнение гидросферы

Гидросфера объединяет все свободные воды, которые могут перемещаться под влиянием солнечной энергии и сил гравитации. Это воды океанов, морей, озер, снега, подземные, грунтовые, речные, атмосферные (в виде пара, тумана).

Как отмечалось в п. 2.2.3, на Земле имеется около 1,4 млрд км3 соленой воды (97%). Площадь водной поверхности равна 361 млн км2. На суше находится до 40 млн км3 (3%) свободной пресной воды. В виде ежегодно возобновляемого стока рек мира объем пресной воды, наиболее нужной для живых организмов, составляет около 0,04 млн км3, или около 0,1% от всего ее объема.

Виды загрязнителей гидросферы. Различают загрязнители гидросферы по природе: минеральные (около 42%), органические (около 58%), биологические (бактериальные); по объекту: промышленные, хозяйственно-бытовые, фекальные; по растворимости: нерастворимые, растворимые и т.п.

К минеральным загрязнителям относят песок, глину, шлак, соли, кислоты, щелочи, минеральные масла и т.п., содержащиеся в сточных водах металлургической и машиностроительной промышленности, отходах нефтяной и перерабатывающей промышленности.

Органические загрязнители по происхождению делят на растительные: трава, растительные и пищевые остатки, бумага, нефтепродукты; животные: загрязнения животноводческих ферм, выделения животных, стоки боен скота, кожевенных заводов, биофабрик.

Источники загрязнения гидросферы – это объект или субъект, вносящий в воду загрязняющие вещества, микроорганизмы или теплоту. Ими являются атмосферные и талые воды городов, бытовые и промышленные сточные воды, животноводческие стоки и грунтовые воды, загрязненные удобрениями и пестицидами. Ежегодно в водоемы сбрасывается около 30 млрд м3 неочищенных вод. Основная причина загрязнения морских вод – разливы нефти. Загрязнение водных систем более опасно, чем загрязнение атмосферы, потому что процессы очищения воды протекают значительно медленнее.

52

Загрязнение рек и водоемов. Они загрязняются сточными водами промышленных и коммунальных хозяйств; водами шахт, рудников, нефтепромыслов; атмосферными загрязненными осадками; сбросами транспорта; продуктами сельскохозяйственной деятельности и обработки технических культур; отходами производств; отходами древесины при заготовке и сплаве леса. К загрязнителям относятся: поверхностно-активные вещества, синтетические моющие средства, пестициды и другие химические соединения, фекальные спуски и т.д.

Во многих густонаселенных территориях интенсивно загрязняются реки. Воду таких рек не только пить, но и купаться нельзя в ней. Нил – древняя река человечества, за год принимает в себя около 100 млн м3 ядовитых отходов и нечистот. В Индии с 1940 по 1950 г. фекальные инфекции от загрязненных вод привели к смерти около 27 млн чел. Рейн превращен в сточную канаву Европы. Лишь один промышленный гигант «Байор» сбрасывает в него ежегодно до 3000 т ядовитых веществ. В Майн ядовитые сливы в количествах более 800 т поставляет компания «Фарбверх Хехст». В крупнейшую реку Европейской России Волгу поступает около 25 км3/год сточных вод при потоке воды у Волгограда в 240 км3/год. Разбавление стоков составляет менее 1/10, тогда как по нормам оно должно составлять от 1/20 до 1/30.

Умирают озера. Пример тому – Аральское море-озеро, которое гибнет из-за уменьшения поступления воды в связи с постройкой Каракумского канала и роста расхода воды рек Амударьи и Сырдарьи на полив. Одно из Великих озер Америки – озеро Эри

– превращается в сточный водоем, в который ежегодно сбрасывается 6 тыс. м3 сточных вод и до 40 млн м3 промышленных сливов. Загрязняются, преимущественно стоками целлюлозных комбинатов, озеро Ладога и чистейшее озеро мира – Байкал.

Загрязняются и истощаются подземные запасы вод. Даже ледники загрязняются при выпадении осадков. Во льдах Гренландии содержание свинца в 1969 г. по сравнению с 1953 г. повысилось в 20 раз и превышает естественный уровень чистых льдов в

500 раз.

Загрязнение морей. Оно происходит: вследствие промышленной, сельскохозяйственной и бытовой деятельности людей, которая приводит к загрязнению рек, впадающих в моря; из-за непосредственных сбросов в моря отходов и грязных стоков; из-за раз-

53

лива нефти из танкеров при их крушении. Некоторые из сбросов удобряют прибрежные части морей и океанов, создавая обилие фитопланктона, рост сине-зеленых водорослей и, как следствие, заполнение ими огромных акваторий и гибели других живых организмов моря. Сейчас это достигло такой степени, что море, несмотря на значительные резервные функции самоочищения, уже не способно восстановить свои природные качества, если ему не помочь. В первую очередь это касается внутренних водоемов: Каспийского, Средиземного, Балтийского, Красного, Аральского и других морей. По заключению Ж.-И. Кусто, без неотложных мер по восстановлению вод Средиземного моря оно станет мертвым всего через 40 лет.

На первом месте среди загрязнителей моря находится нефть. Так, авария на скважине у Санта-Барбары в Калифорнии в 1969 г. сопровождалась суточным изливом в море до 100 тыс. л нефти. Авария супертанкера «Торри-Карион» у южной оконечности Англии привела к загрязнению моря 17 тыс. т нефти. И эти примеры можно долго приводить. Из-за разливов нефти первичная продукция моря только за последние 25 лет уменьшилась на 15–25%. Другими загрязнителями морских вод являются пестициды, отходы металлургических и химических производств, особенно содержащие три тяжелых металла: ртуть, медь свинец. Так, в морскую среду ежегодно попадает около 5 тыс. т ртути.

Воздействие загрязнений гидросферы на флору, фауну и человека. Кислотные дожди, которые порождаются продуктами сгорания природных углей и нефтяных продуктов, губят растительность, ухудшают качество грунтовых вод. Рекордное повышение кислотности воды до рН 2,4 зафиксировано в шотландском городе Питлохри. На севере Скандинавии образовались «кислотные» озера. В Австрии в 1983 г. было подвержено заболеванию 200 тыс. га лесных массивов. Гибель леса приводит к эрозии горных склонов, возрастает опасность лавин и обвалов. Леса превращаются в каменистую пустошь.

От сбросов неочищенных вод в водоемы гибнет рыба и водная растительность. Постоянное употребление человеком воды, содержащей концентрации вредных примесей больше ПДК в несколько раз, приводит к хроническим заболеваниям кожи, желудка, печени. При большом превышении ПДК возможны отравления и

54

смерть. Появление в воде болезнетворных микроорганизмов может вызвать эпидемию, например, холеры.

Особую опасность для живых организмов представляет загрязнение морей и прибрежной зоны при разливе нефти из потерпевших крушение танкеров (около 10 млн т/год), при авариях на морских буровых платформах, при промывке танкеров (около 2 млн т/год). Обычно такие аварии вызывают экологическую катастрофу в местах попадания нефти в воду, поскольку нефть и нефтепродукты оказывают вредное воздействие на многие живые организмы, в первую очередь на исходный продукт питания большинства морских организмов – планктон.

2.4.4. Загрязнение биолитосферы

Источники загрязнения биолитосферы. Загрязнение рас-

тительности, строений, почвы, недр возможно газами, аэрозолями, пылевидными, жидкими и твердыми веществами. Например, выхлопные газы автомашин содержат оксиды азота, соединения свинца, углеводороды, сажу, которые, оседая на придорожных растениях и почве, вовлекаются в природные круговороты, связанные с пищевыми цепями. Большой урон, особенно лесам, наносят кислотные дожди. Выпадение радионуклидов на обширной территории после аварии на Чернобыльской АЭС – страшный пример загрязнения биосферы человеком. Однако основной вклад в загрязнение литосферы вносят твердые отходы. Так, в мире ежегодно добывается свыше 100 млрд т полезных ископаемых, из которых около 99% идет в отходы.

Твердые отходы по виду деятельности человека подразделяют на промышленные, сельскохозяйственные и бытовые.

Промышленные отходы: отвалы (основная масса отходов), шлаки, шламы, зола и иные горной, горно-химической, металлургической промышленности и ТЭЦ; металлическая стружка, бракованные изделия, металлолом металлообрабатывающих предприятий; фосфорогипс, огарок, шламы, отходы резины, пластмасс химической промышленности; радиоактивные отходы атомной промышленности и АЭС; отходы лесозаготовок, лесопиления, деревянных конструкций, мебели лесной и деревообрабатывающей промышленности; кости, шерсть, шелуха, мусор пищевой и легкой промышленности.

55

Сельскохозяйственные отходы: солома, труха, раститель-

ный мусор; навоз; остатки удобрений и пестицидов, обломки тары. Бытовые: отходы пищи, очистки, мусор, стекло и т.п.

Загрязнение почвы пестицидами, токсикантами Почвы могут загрязняться патогенными бактериями, пестицидами, токсикантами. Биологическое загрязнение описано в п. 2.4.5.

Пестициды (лат. petis – зараза, cido – убивать) – собирательное название ядохимикатов, предназначенных в сельском хозяйстве. Их классифицируют по гигиеническому, химическому и производственному признаку.

В зависимости от объекта воздействия (сорняки, насекомые, животные) пестициды подразделяют: для борьбы с клещами –

акарециды, с бактериями – бактерициды, с грызунами – зооциды, с

вредными насекомыми – инсектициды, с круглыми червями – нематоциды, с грибками, паразитирующими на растениях, – фунгициды, с микроорганизмами, разрушающими неметаллические материалы – антисептики; для уничтожения сорняков – гербициды, водорослей – альгициды; для удаления листьев – дефолианты, излишних цветков – дефлоранты, для высушивания листьев на кор-

ню – дисиканты.

Многие пестициды – ядовитые вещества, некоторые из них сильные яды. В основном это органические вещества, содержащие хлор (гексахлоран, полихлоркамфен, алдрин, ГХЦГ – гексахлорциклогексан, дилор), фосфор (хлорофос, метафос, карбофос, фозалон, фосамид и др.), ртуть (гранозан, меркуран, агронал, фализан и др.), мышьяк, цианиды. Ряд пестицидов, например ДДТ – 4,4- дихлор-дифенилтрихлорэтан, долго сохраняется в природной среде. Металлы пестицидов (ртуть, свинец и др.) способны накапливаться в живых организмах.

Человек ежегодно теряет около 35% урожая, в том числе от вредителей – около 14%, болезней – 11, сорняков – 10%. Применение пестицидов позволяет снизить эти потери и повысить урожайность. Мировое производство пестицидов составляет более 2 млн т, в России около 150 тыс. т. Их ассортимент – более 1000 наименований, в России– около100. Однако из-за приспособления вредителей к пестицидам потери урожая снова возрастают. Кроме того, неумелое и неумеренное их использование приводит к гибели полезных живых организмов, загрязнению почвы и затем грунтовых вод. Так, в России 6–9% обследованной площади почвы загрязнены пес-

56

тицидами, преимущественно запрещенным теперь 4,4- дихлордифенил-трихлорэтаном (ДДТ), а в Московской и Иркутской областях – до 50% площади.

Токсиканты – ядовитые вещества, попадающие в почву из выбросов, сбросов и отходов больших городов и крупных предприятий металлургии, нефтехимии, угледобычи, машиностроения. Их различают по классам опасности: класс I – 3,4-бензпирен, соединения мышьяка, ртути, свинца, селена и др.; класс II – соединения хрома (VI), меди, сурьмы, молибдена, никеля и др.; класс III – ацетофенон, соединения ванадия, марганца, стронция, вольфрама, фтора. Из 85 обследованных в 12 городах России загрязнение почвы по отдельным токсикантам превышает ПДК примерно в 10 раз. В трех городах – Белово (Кузбасс), Мончегорск (Кольский полуостров), Ревда (Урал) – загрязнение почвы в городе и в радиусе 5 км от него относится к чрезвычайно опасному.

2.4.5.Биологическое загрязнение

Вотличие от воздуха вода и особенно неподвижная почва способны накапливать и хранить попадающие в них загрязнения, в том числе биологические. Почва и вода – среда обитания низших животных и микроорганизмов, таких как бактерии, грибки, вирусы

идр. Некоторые из них являются болезнетворными: палочки сибирской язвы, столбняка, ботулизма, газовой гангрены, возбудители дизентерии, холеры, тифа, чумы, ящура, бруцеллеза и др.

Источники болезнетворных загрязнений: недостаточно обезвреженные твердые и жидкие хозяйственно-бытовые отходы (особенно учреждений здравоохранения), скотомогильники, выбросы животноводческих комплексов и ряда предприятий – боен, биофабрик и т.п.

Другой вид биологического загрязнения – это насекомые и другие организмы – переносчики болезней, например, комары (малярия), клещи (энцефалит), вши (тиф), мыши и крысы (чума) и т.д.

Серьезный вред наносят животные и растения, попавшие из другой экосистемы в новую экосистему, где у них нет естественных врагов (экофагов). Примеры: массовое размножение и расселение кроликов в Австралии, где нет волков и лис; быстрое распространение колорадского жука из Америки по Европе и Азии; наступление на местные леса Колхиды (Грузия) эвкалиптов, ввезенных из Австралии и высаженных для осушения болот.

57

2.4.6. Физическое загрязнение

Человек создал новые виды вредного воздействия на свое собственное здоровье – энергетические. Это следующие виды физического загрязнения: повышенный уровень шума, вибрации, световых, электромагнитных и ионизирующих (радиоактивных) излучений.

Шум представляет смесь звуков разной интенсивности и частоты. Вибрация – колебания твердых тел, воспринимаемые как сотрясения. Шумы и вибрация связаны с работой машин и механизмов (дробилок, молотов, моторов, вентиляторов и др.) и движением газов, жидкостей, транспорта. Шум и вибрация нарушают нормальную деятельность сердечно-сосудистой и нервной системы, пищеварительных и кроветворных органов, ухудшают слух, вызывают тугоухость. Вибрация вызывает онемение конечностей, заболевание суставов.

Уровень громкости звука L при его звуковом давлении Роценивают в логарифмической шкале, в белах (Б), точнее в 10 раз больше – в децибелах (дБ):

L = 10 lg (P / Po)2 = 20 lg (P / Po).

(2.3)

Здесь Ро – давление звука на пороге слышимости, Ро = 2 10–5 Па.

Примеры уровней громкости звука (дБ): шепот – 10; тихий сад – 20; шаги, тихая музыка – 40; разговор – 60; громкая речь – 70; салон самолета – 80; гудок автомобиля, шум от транспорта – 85; отбойный молоток – 110; гром – 120; болевой порог – 120130. Шум более 140150 дБ разрывает барабанные перепонки. Гигиенический предел громкости – шум 70 дБ с частотой 1000 Гц.

Оптимальный (комфортный) уровень громкости звука –

30–40 дБ.

Методы снижения шума и вибрации: в домах и на рабочих местах – замена шумящих и вибрирующих устройств бесшумными или малошумящими, невибрирующими; их изоляция средствами звуко- и виброизоляции, звуко- и вибропоглощения; использование средств индивидуальной защиты; вне помещений – создание малошумящей техники (самолетов, наземного транспорта), увеличение расстояния источника шума от жилых построек и мест пребывания скопления людей, устройство шумозащитных полос озеленения.

58

Электромагнитное излучение. Источниками электромаг-

нитного излучения служат ЛЭП, радио- и телестанции, средства радиолокации и радиосвязи, компьютеры, сотовые телефоны, энергоемкие установки.

Длительное воздействие высоковольтного электромагнитного поля промышленной частоты (50 Гц) и полей радиочастот (106–1012 Гц) на организм человека приводит к нарушениям нервной и сердечно-сосудистой системы. Признаки этого нарушения: головная боль, головокружение, потемнение в глазах, боли в области сердца, увеличение давления крови, частоты пульса, повышение утомляемости, сонливость, снижение и потеря памяти, появление чувства тревоги, страха. Возможны раковые заболевания и др.

Основной вид защиты людей от воздействия электрического поля частотой 50 Гц – ограничение времени их пребывания в рабочей зоне. По ГОСТ 12.1.002-84 это время составляет: при напряженности электрического поля до 5 кВ/м – рабочий день, при 5–20 кВ/м – по формуле (часы): Т = [(50/Е) – 2] (Е – в кВ/м), при 20–25 кВ/м – не более 10 мин. При напряженности поля более 25 кВ/м обязательно применение экранов и экранирующей одежды.

Внутри жилых помещений напряженность электрического поля дол-жна быть не более 0,5 кВ/м, на территории жилой застройки – до 1 кВ/м.

Радиочастоты подразделяют на три диапазона: высокие частоты (ВЧ) – от 0,06 до 30 МГц, ультравысокие (УВЧ) – от 30 до 300 МГц, сверхвысокие (СВЧ) – от 0,3 до 30 ГГц. Согласно ГОСТ 12.1.006-84 допустимая в течение рабочего дня напряженность электрического поля уменьшается с 50 В/м для частот 0,063 МГц до 5 В/м – для частот 50300 МГц. Нормативное значение энергетической нагрузки СВЧ за рабочий день равно2 Вт ч/м2. Для территорий жилой застройки установлены следующие предельно допустимые значения электромагнитной энергии: длинные радиоволны

(0,03–0,3 МГц) – 20 Вт/м; средние волны (0,3–3 МГц) – 10 Вт/м;

короткие волны (3–30 МГц) – 4 Вт/м; УВЧ – 2 Вт/м; СВЧ – 5 мкВт/см2.

Защита персонала от воздействия радиоволн при превышении допустимых норм: экранирование источника излучения и рабочего места, увеличение расстояния, рациональное размещение оборудования, применение средств предупреждения и индивидуальной защиты. Передающие радиоцентры, телецентры, радиоло-

59

каторы при мощности передатчиков 100 кВт и более размещают вне населенных пунктов с обустройством санитарно-защитных зон с шириной не менее 1 км, а для коротковолновых станций мощностью 25–100 кВт – шириной 0,4–2,5 км, свыше 100 кВт – более

2,5 км.

2.4.7. Радиоактивное загрязнение

Ионизирующее – обычно это радиоактивное излучение, взаимодействие которого со средой приводит к образованию электрически заряженных частиц. Различают два вида ионизирующего излучения: корпускулярное – поток частиц с массой покоя, отличной от нуля (α-частицы, β-лучи (электроны), нейтронное (n) и протонное (р) излучение); фотонное – поток электромагнитных колебаний (рентгеновские и γ-лучи).

Источники облучения. Люди подвергаются внешнему и внутреннему облучению ионизирующим излучением природных и искусственных источников. К природным источникам относятся космическое излучение и природные радионуклиды, содержащиеся в природной среде и поступающие в организм человека с воздухом, водой и пищей. Искусственные источники излучения, производимые атомной промышленностью, АЭС, разделяются на техногенные (искусственные или сконцентрированные человеком природные радионуклиды, генераторы ионизирующего излучения) и медицинские (диагностические и радиотерапевтические).

Характеристики излучения. Ионизирующая способность излучения – это число пар ионов, создаваемых излучением в единице объема, массы среды или на единицу пути. Она наиболее велика у α-частиц. В биологической ткани α-частицы с энергией 2 МэВ создают на 1 мкм пути более 7000 пар ионов, протоны – около 500 пар ионов, электроны – около 8 пар.

Проникающая способность излучения это путь, пройден-

ный частицей в веществе до ее полной остановки. Пробег сильно зависит от вида излучения, его энергии и от свойств поглощающего вещества, особенно от его плотности. Так, пробег α-частиц с энергией 5–9 МэВ в воздухе составляет 35–90 мм, в биологической ткани – 0,04–0,10 мм. Для β-лучей с энергией 1–3 МэВ длина пробега в воздухе составляет метры и десятки метров. Фотонные излучения обладают большой проникающей способностью, в воздухе – многие тысячи метров. Для практических расчетов используется тол-

60