Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Батенков В.А. Охрана биосферы

.pdf
Скачиваний:
63
Добавлен:
02.05.2014
Размер:
1.73 Mб
Скачать

образ жизни человека, использование огня, возникновение обмена и закрепление информации в виде разговорного языка, а позже и в виде письменности быстро продвинули человека на значительно более высокую ступень развития, чем любого другого вида животных.

Около 10 тыс. лет назад человек, вместо приспособления к внешним условиям начал приспосабливать объекты природы к своим нуждам: разводить животных, возделывать поля и т.п. В отличие от животного мира, где существуют такие природные факторы регуляции численности особей, как голодная смерть, конкуренция, хищничество, болезни, человек стал стремиться исключить или уменьшить воздействие на себя подобных факторов. Создание и совершенствование орудий труда привело к развитию ремесел, росту хозяйственной деятельности людей и возникновению первых цивилизаций. Это способствовало быстрому росту численности людей, их жизненного обеспечения, образования, культуры и, как следствие, – к развитию техники, городов.

1.3.Факторы, воздействующие на биосферу

1.3.1.Факторы, воздействующие на живые организмы

Экологические факторы – это условия среды, оказывающие существенные влияние на живые организмы. Их три группы: биотические, связанные с влиянием живых веществ; абиотические – факторы неживой среды; антропогенные, связанные с деятельностью человека.

Биотические факторы. Они определяются формой взаимосвязей и взаимоотношений живых организмов, прямым воздействием одних из них на другие. Жизнедеятельность одного вида организмов может осуществляться без или с угнетением или подавлением других видов. Эти взаимоотношения – нейтрализм, конкуренция, паразитизм, хищничество, симбиоз и т.п. – складываются при совместном обитании, питании, размножении. Поэтому их делят на три группы: топические, трофические, генеративные.

Топические (греч. topikos – местность) отношения – это взаимоотношения организмов при совместном проживании.

Трофические (греч. trophē – питание) отношения, связанные с питанием. По способу питания живые организмы делятся на авто- и гетеротрофные.

11

Автотрофные организмы (продуценты) способны сами создавать себе пищу, синтезируя органические соединения из неорганических веществ.

Гетеротрофные организмы используют для питания живые растения и их плоды (консументы) или мертвые растительные или животные остатки (редуценты).

Генеративные отношения – это те, которые складываются на основе размножения.

Абиотические факторы. К ним относят климатические, эдафические (почвенные), химические факторы.

Климатические факторы – это температура, влажность, ветер, свет. Лучистая энергия Солнца – основной источник жизни на Земле. Она обеспечивает нужный температурный режим и фотосинтез зеленых растений, т.е. весь объем растительной биомассы. Климат зависит от широты расположения местности на земном шаре, наклона ее поверхности и рельефа, высоты над уровнем моря, близости больших водоемов, времени суток, года и т. п.

Эдафический фактор – это совокупность физико-химиче- ских свойств почв: их структура, химический состав. Эти свойства определяют жизнедеятельность организмов в почве.

Химический фактор: состав воздуха, состав воды, кислотность и состав почвенных растворов. Вода – это важнейший фактор, это среда, где возникла жизнь. Все живое содержит воду.

Антропогенные факторы обусловлены деятельностью человека. Они более разнообразны, чем природные катаклизмы и часто более губительны для биосферы (см. главу 2).

1.3.2. Факторы, воздействующие на природную среду

Природная среда – это среда обитания живых организмов. На совокупность ее физических, химических и биологических жизненно важных условий вредное воздействие могут оказывать природные и антропогенные факторы.

Природные бедствия, нарушающие жизнь в экосистемах, – это лесные и степные пожары, ураганы, наводнения, землетрясения, вулканическая деятельность, падение крупных астероидов.

Антропогенные факторы. Рост численности людей, их бытовая и производственная деятельность особенно за последнее столетие существенно влияют на биогеохимическое равновесие в био-

12

сфере, на воспроизводство ее ресурсов. В дальнейшем этим факторам будет уделено наибольшее внимание.

1.4. Круговорот вещества и энергии в биосфере

1.4.1.Круговорот биогенного вещества и энергии в биосфере

Виды круговорота: биохимический, энергетический, вещественный.

Биогеохимические циклы – это круговые движения химических элементов между организмами и природной средой. Общая схема круговорота биогенного вещества: а) фотосинтез органи-

ческих веществ; б) их использование живыми организмами, в) редукция (возвращение) органических веществ в неорганические.

В процессе фотосинтеза органических веществ и роста тканей растений, т.е. жизнедеятельности продуцентов, используются энергия Солнца, вода и минеральные вещества: соединения углерода, азота, фосфора, кальция, натрия, калия и других элементов. Часть биомассы продуцентов, вода, кислород, некоторые минеральные вещества обеспечивают жизнедеятельность консументов 1 порядка – травоядных животных. Последние, вместе с рядом неорганических веществ – источник жизни консументов 2 порядка – хищников. После гибели живых организмов их органические вещества попадают обратно в природную среду. Здесь они претерпевают различные превращения, перемещения и в итоге с помощью редуцентов минерализируются. Биогеохимические циклы носят круговой, примерно на 99% замкнутый характер. Иными словами они почти не имеют отходов. Один процент – это соединения углерода

вземной коре (известняк, нефть, уголь), дополнительный кислород

ввоздухе.

Потоки энергии в экологических системах. Источником энергии для биосферы является Солнце. Ее количество, поглощаемое поверхностью Земли, уравновешивается энергией теплового излучения, что сохраняет тепловой баланс Земли почти на постоянном уровне.

В пределах биосферы, отдельной экосистемы из энергии солнца С примерно в 13 МДж/м2, падающей в среднем за день в зоне умеренного климата на поверхность Земли и на растения С1, лишь небольшая частьее поглощается и превращается в продукцию

13

фотосинтеза (рис. 1.1). Этот поглощаемый поток энергии соответствует первичной валовой продуктивности Пв, которая представляет суммарную продукцию фотосинтеза, включая вещество, расходуемое на дыхание Д: Пв = Пч + Д. Чистая первичная продуктивность Пч – это видимый продукт фотосинтеза, вещество, которое можно, например, взвесить при уборке урожая: Пч = Пв Д.

 

 

 

Продуценты

 

 

 

 

Травоядные

 

 

 

 

Хищники

 

 

 

 

 

 

 

Д

 

 

 

 

 

 

Д1

 

 

 

 

 

 

Д2

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пв

 

 

Пч

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

С1

 

 

 

К1

 

 

А1

 

П1

 

К2

 

А2

 

 

П2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Н

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Т

 

 

 

 

Н

 

 

 

 

Н

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Биогенноевещество

 

Т

Т

 

 

 

 

 

 

 

 

 

 

Биоредуценты

 

 

 

С

С1

Пч

 

 

 

 

 

 

 

П1

 

 

 

 

П2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,3

13000

6000

 

 

50

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Энергия, кДж

Рис. 1.1. Схема преобразования потока энергии в простой пищевой цепи: С и С1 – солнечная энергия, падающая

на поверхность Земли и на растения; Т – энергия, рассеиваемая в виде тепла; Пв, П1, П2 – энергия, затрачиваемая растениями, травоядными, хищниками; Д, Д1, Д2 – энергия, рассеиваемая ими при дыхании; К1 и К2 – энергия корма, потребляемого травоядными животными

ихищниками; А1 и А2 – энергия, усваиваемая травоядными животными

ихищниками при потреблении корма; Н – энергия биомассы, неиспользованной животными

Как видно из схемы, большая часть солнечной энергии С, падающей на поверхность Земли и на растения С1, рассеивается в виде тепла Т. Лишь часть ее поглощают растения и аккумулируют частично в виде чистой продукции фотосинтеза Пч, а частично тратят на дыхание Д, включая потери тепла. В сумме они составляют

14

энергию, затраченную на получение первичной валовой продук-

ции: Пв = Пч + Д.

Часть чистой продукции продуцентов Пч служит кормом К1 травоядным животным, обеспечивая их вещественные и энергетические потребности. Остальная неиспользованная часть Н отмирает и поступает в почву в пищу биоредуцентам. Из корма К1 животные ассимилируют лишь количество вещества А1, из которого часть идет на создание биомассы П1 (вторичная продуктивность травоядных), а часть – на дыхание Д1, включая потери тепла.

Хищники не истребляют всех травоядных животных. Из общей биомассы травоядных П1 они используют на корм долю К2, которая частично ими усваивается (А2), частично идет в отходы Н. Часть усвоенного вещества А2 представляет собой биомассу П2, часть затрачивается на дыхательную энергию Д2: А2 = П2 + Д2.

Энергия биогенного вещества расходуется на получение биомассы редуцентов и их дыхание, включая потери на тепло. Биомасса редуцентов, как и продуцентов и консументов, в конечном итоге минерализуется и выделяющееся при этом тепло рассеивается.

Из приведенной шкалы энергии (рис. 1.1) следует, что из солнечной энергии С1 6000 кДж (для умеренного климата) в энергию пищи превращается лишь около 1%, 50 кДж. Это приблизительное значение эффективности фотосинтеза.

Вторичная продукция уровней потребления П1 и П2 составляет 5–10% предыдущей, т.е. на последующий уровень передается около 5–10% энергии. Это примерное значение эффективности потока энергии Э в природе по цепям питания. Так, Э2 = (А2 /А1) 100%. Оно означает, что биомасса хищников будет меньше биомассы травоядных в 10–20 раз, а растений – в 100–400 раз. Эта эффективность определяет численность животных в природе.

Экологические пирамиды. Экологическую эффективность продуктивности уровней потребления в экосистеме выразим в виде экологических пирамид, т.е. в виде фигур, расположенных одна над другой, размеры которых иллюстрируют численность особей, продуктивность и энергетические затраты каждого уровня

(рис. 1.2).

15

Мальчик

1

50

 

 

300

 

 

 

 

 

 

кг

 

 

 

кДж

 

Телята

5

 

 

600 кг

 

5000 кДж

 

 

 

 

 

 

 

 

Люцерна

20 млн. растений

 

8200 кг

 

60000 кДж

 

А – численность

Б – биомасса

В – затраты энергии

Рис. 1.2. Экологические пирамиды цепи: люцерна–телята–мальчик

1.4.2.Круговорот углерода, азота, фосфора, кислорода, воды

Круговорот углерода. Общие запасы углерода в биосфере составляютоколо20 000 000 млрдт. Они более чем на 99% состоят из отложений СаСО3. Лишь около 10 000 млрд т углерода находится в виде ископаемого топлива (уголь, нефть, газ). В неживой органике углерода: в океане – 3000 млрд т, в почве – 700 млрд т. Содержание углерода в биомассе (млрд т): наземные растения – 450, поверхностные слои моря – 500, фито-, зоопланктон и рыбы – 10– 20. В атмосфере воздуха в виде СО2 – около 1000 млрд т.

Запасов углерода очень много, но лишь диоксид углерода СО2 воздуха представляет источник углерода, который усваивается растениями в количестве около 35 млрдт в год.

Впроцессе фотосинтеза СО2 превращается в сахара, жиры

идругие вещества. Например:

6CO2 + 6H2O + hν C6H12O6 + 6O2.

(1.1)

Возврат углерода в атмосферу происходит в процессе дыхания животных и растений (около 10 млрд т), разложения организмов в почве (в виде СО2, углеводородов, меркаптанов; около 25 млрд т). Сверх биогенного, сбалансированного углерода в атмосферу поступает антропогенный диоксид углерода после сжигания углеродного топлива (уголь, нефть, газ, сланцы, лес и т.п.; 5 млрд т)

иприродный его диоксид – при извержении вулканов.

Вморях и океанах некоторые организмы, умирая, опускаются на дно (в частности, скелеты фитопланктона) и образуют карбонатные осадочные породы, а неразложившееся органическое вещество – ископаемое углеродное топливо. Обмен СО2 воздуха с по-

16

верхностными морскими водами составляет: растворение в воде – 100 млрд т, выделение из воды – 97 млрд т.

Быстрый круговорот углерода связан с живыми организма-

ми: а) потребление СО2 в процессе фотосинтеза органических веществ, б) выделение СО2 при дыхании организмов и разложении органики. Его длительность зависит от времени жизни организма. Так, углерод лесов совершает круговорот примерно за 30 лет – средний срок жизни дерева. Леса являются главным потребителем СО2 на суше и основным хранилищем биологически связанного углерода. Они содержат около 2/3 его атмосферного запаса.

Медленный круговорот углерода включает ископаемое топливо, что исключает углерод из оборота на длительное время – миллионы лет. Он возвращается в атмосферу в виде СО2 в результате сжигания ископаемого топлива человеком и при извержении вулканов.

Круговорот азота. Океан воздуха, окружающий Землю, содержит 78% азота. Однако большинство организмов неспособны непосредственно усваивать атмосферный азот. Они используют в основном связанный азот: нитраты, аммонийный и амидный азот.

Круговорот азота состоит из следующих процессов: получение связанного азота, использование его живыми организмами, преобразование соединений азота в свободный азот.

Варианты получения связанного азота (млн т/год): синтез оксидов азота в атмосфере грозовыми разрядами – 7,6; фиксирование атмосферного азота микроорганизмами – 30, бобовыми – 14, синезелеными водорослями – 10; синтез азотных удобрений человеком – 30. Всего около 92 млн т/год связанного азота.

Круговорот связанного азота в биосфере. Азот в форме нит-

ратов используется растениями для синтеза протеинов, являющихся составной частью всех клеток растительных и животных организмов. Содержание азота в тканях около 3%. Протеины при отмирании служат питанием целой цепи почвенных организмов. Они, разлагая органическое вещество, переводят органический азот в аммиак. Другие бактерии переводят аммиак в нитраты. Последние снова используют растения, и цикл превращений азота в пищевой цепи повторяется.

Окисление азота аммиака до нитритов осуществляется с участием бактерий Nitrosomonos (реакция нитрификации):

NH3 + 1,5O2 HNO2 + H2O + 273 кДж/моль. (1.2)

17

Выделяющейся при этом энергии вполне достаточно для существования этих бактерий. Это исключительный случай в живой природе, который позволяет поддерживать существование живых организмов без энергии Солнца. Они не потребляют энергию, запасенную в органических веществах, а используют энергию окисления неорганических веществ. Другие микроорганизмы способствуют окислению нитритов дальше до нитратов с выделением энергии в 71 кДж/моль, что позволяет им выживать, так же как и вышеуказанным бактериям.

Аммиак почвы может усваиваться растениями и без его нитрификации. При этом он включается в аминокислоты и становится частью белка растения, а после поедания растений переходит в животные белки. Белок возвращается в почву, где он распадается на аминокислоты, которые окисляются при участии бактерий до СО2, Н2О, NH3. И цикл повторяется.

Связанный азот в количестве 2-3 млн т/год в виде растворимых соединений попадает с водой в океан и надолго теряется для биосферы в донных отложениях. Эти потери в основном компенсируются соединениями азота из вулканических газов.

Денитрификация – это процесс освобождения связанного азота посредством его восстановления с участием бактерий денитрификаторов. Например:

C6H12O6 + 8HNO2 6CO2 + 10H2O + 12N2 + 2394 кДж/моль (1.3)

Денитрификация идет в анаэробных условиях, т.е. в отсутствие кислорода как на суше (43 млрд т/год), так и в море (40 млрд т/год) с образованием 83 млрд т азота в год. На суше бактерии активны в почвах, богатых соединениями азота и углерода, особенно в навозе.

Несмотря на потери связанного азота из-за денитрификации (83 млрд т/год), в биосфере идет его накопление в количестве около 92 – 83 = 9 млрдт/год. Причина излишка – производство человеком избыточного количества азотных удобрений. Таким образом, круговорот азота нарушен на 10%, что становится опасным, так как вода загрязняется нитратами. Человечество ожидают новые осложнения из-за быстрого увеличения количества азотсодержащих отбросов в связи с резким возрастанием народонаселения и поголовья скота.

Круговорот фосфора. Значение фосфора для биосферы.

Фосфор – составная часть важнейших для организмов органиче-

18

ских соединений, например, таких как рибонуклеиновая (РНК) и дизоксирибонуклеиновая (ДНК) кислоты, входящих в состав сложных белков. Соединения, содержащие фосфор, играют существенную роль в дыхании и размножении организмов. При достатке фосфора повышается урожай, засухоустойчивость и морозоустойчивость растений, увеличивается в них содержание ценных веществ: крахмала в картофеле, сахарозы в свекле и т.п. Недостаток фосфора ограничивает продуктивность растительности в большей степени, чем недостаток любых других веществ, исключая воду.

Усвояемые соединения фосфора. Растения используют фос-

фор из почвенного раствора в виде соединений фосфорной кислоты – ионов Н2РО4, НРО42–. В почве их образуют три группы усвояемых фосфорных соединений: природные, органические и промышленные.

В земной коре фосфора довольно много – около 0,1% по массе. Разведанные запасы фосфатного сырья составляют около 26 млрд т. Известно примерно 120 фосфорсодержащих минералов: апатит, фосфориты, фосфаты алюминия, железа, магния и др. Однако все они трудно растворимы в воде и, следовательно, малоэффективны. Для растений фосфорные соединения доступны только после их дефосфорилирования – ферментативного расщепления организмами почвы. Доля такого фосфора в питании растений составляет 20–60%. Промышленность выпускает фосфорные удобрения, которые хорошо усваиваются растениями. Это двойной суперфосфат Са(Н2РО4)2 Н2О, фосфат аммония, нитрофоска и др.

Круговорот фосфора: а) усвоение растениями (продуцентами); б) потребление животными (консументами), редуцентами; в) дефосфорилирование. В природном круговороте фосфора имеется существенный его дефицит, около 2 млн т в год. Это потери его растворимых соединений, включенных в природный круговорот воды. Достигая с водой океана, они теряются на его дне в отложениях. В круговорот из океана возвращается лишь около 60 тыс. т фосфора в год в виде прибрежного гуано (помет и останки птиц, питающихся рыбой) и рыбной муки из выловленной рыбы. Считается, что круговорот фосфора – единственный в природе пример простого незамкнутого цикла. Человек, производя фосфорные водорастворимые удобрения, ускоряет убыль природных фосфатов, расходуя около 3 млн т в год апатита и фосфоритов. При таком расходе их хватит примерно на 10 тыс. лет.

19

Круговорот кислорода. Запасы кислорода в биосфере очень большие, примерно 50% ее массы. В ней он самый распространенный элемент. Основное количество связанного кислорода приходится на гидросферу и литосферу. В песке его около 53%, глине – 56%, воде – 89%. Свободный кислород содержится в атмосфере в количестве 1 200 000 млрд т, что составляет лишь 0,01% его общего количества. Большая часть атмосферного кислорода – продукт фотосинтеза растений.

Схема круговорота кислорода: а) генерация растениями в процессе фотосинтеза (около 16 млрд т/год); б) потребление живыми организмами при дыхании; в) расход на окисление биогенного вещества.

Для высших форм жизни (растения, животные) пригодно аэробное дыхание – прямое окисление кислородом органики, например, глюкозы:

C6H12O6 + 6O2 6CO2 + 6H2O + 2880 кДж/моль. (1.4)

Большое количество энергии, которая выделяется при дыхании и окислении веществ в организме с участием кислорода, идет на поддержание жизнедеятельности высших организмов, которая требует значительных энергетических затрат, например, при перемещениях. Для низших организмов большоевыделение тепла опасно. Они приспособились проводить окисление органики в анаэробных условиях (без О2) с помощью ферментов (см. выше).

Скорость круговорота кислорода в биосфере в нашу эпоху составляет около 2500 лет.

Небольшая часть кислорода постепенно уходит в осадочные породы: карбонаты, сульфаты. Однако эти процессы идут весьма медленно и в целом не влияют на главный круговорот атмосферного кислорода. Опасность представляет антропогенный фактор. Так, за последние 100 лет человеком при сжигании топлива изъято из атмосферы около 250 млрд т кислорода и добавлено около 380 млрд т СО2. Ежегодный прирост расхода кислорода человеком око-

ло 5%.

Круговорот воды. Воды на Земле много – 1,5 млрд км3, но пресных вод меньше 3%. Основная масса пресной воды – 29 млн км3 (75%) – находится в ледниках Арктики и Антарктиды, около 13 млн км3 – в атмосфере, 1 млн км3 – в живых организмах. Лишь всего 0,003% воды, т.е. около 0,04 млн км3, представляют объем ежегодно возобновляемых водных ресурсов.

20