Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Батенков В.А. Охрана биосферы

.pdf
Скачиваний:
63
Добавлен:
02.05.2014
Размер:
1.73 Mб
Скачать

малорастворимые соединения. Например, сероводород можно поглощать щелочным раствором оксисульфомышьяковой соли (реакция А) с последующей регенерацией ее из образующегося продукта реакции окислением кислородом (реакция Б):

А. Na4As2S5O2 + H2S = Na4As2S6O + H2O,

Б. Na4As2S6O + 1/2O2 = Na4As2S5O2 + S2.

В качестве побочного компонента образуется сера – ценное сырье.

Для поглощения оксидов углерода СО2, серы SO2, азота NOx широко используют водные щелочные растворы извести, соды, аммиака.

Аппаратура метода хемосорбции такая же, какая применя-

ется в методе абсорбции. Так, газы травильных ванн, содержащие оксиды азота, пары серной, хлоро- и фторводородной кислот, направляются в форсуночный скруббер, где они нейтрализуются раствором извести. Очищенный газ проходит через центробежный каплеуловитель и выбрасывается наружу. Эффективность очистки от оксидов азота составляет 17–86%, от паров кислот – 95%.

Также используются башни с подвижной насадкой. Они обеспечивают высокую эффективность очистки.

Методы абсорбции и хемосорбции называют мокрыми. Их недостатки:

понижение температуры выбрасываемых газов, что снижает эффективность их рассеяния;

образуется большое количество отходов, возникают проблемы их утилизации. Это осложняет и удорожает очистку загрязненных газов.

Метод адсорбции основан на способности поверхности твердых адсорбентов (поглотителей) избирательно поглощать и концентрировать отдельные компоненты газопаровой смеси. Адсорбция может быть физической, промежуточной (активированной) и химической. Достоинство физической адсорбции – обратимость процесса. Это позволяет относительно просто проводить регенерацию адсорбента, обычно методом нагрева при повышенной температуре, так как физическая адсорбция сильно снижается с увеличением температуры. Процесс химической адсорбции, как правило, необратим, и регенерировать адсорбент не удается.

111

В качестве адсорбентов используют мелкодисперсные порошки активированного угля, оксида алюминия, глинозема, силикагеля, цеолитов и т. п. Основным параметром при выборе адсорбента является его адсорбционная способность, т.е. количество вещества, поглощаемое единицей массы адсорбента или площади его поверхности.

Конструктивно адсорберы представляют вертикальные, горизонтальные или кольцевые емкости, заполненные пористым адсорбентом, через который фильтруется поток очищаемого газа. В адсорберах периодического действия адсорбент неподвижен, он периодически регенерируется. Эти адсорберы просты, но представляют большое сопротивление газовому потоку и поэтому требуют больших энергетических затрат. В непрерывных адсорберах адсорбент постоянно движется под действием сил тяжести или в восходящем потоке очищаемого воздуха. Это позволяет полнее использовать поглощающую способность сорбента, упростить эксплуатацию оборудования. Их недостаток – большие потери сорбента, он истирается.

Термическая нейтрализация. Метод основан на способно-

сти горючих токсичных газов и паров окисляться кислородом при высокой температуре до менее токсичных продуктов. Достоинства метода: отсутствие шламов и необходимости их переработки, небольшие габариты установок и простота их обслуживания, высокая эффективность обезвреживания при низкой стоимости очистки. Однако нельзя сжигать газы, содержащие, например, галогены, серу, фосфор, так как продукты их окисления более токсичны, чем очищаемый выброс.

Различают три способа термической нейтрализации газовых выбросов: прямое сжигание в пламени; термическое и каталитическое окисление.

Прямое сжигание ведут при температуре 600–800 оС. Это экономически выгодно, когда при сжигании очищаемые газы обеспечивают не менее 50% общей теплоты сгорания. Примеры: сжигание в факеле горелки углеводородов, содержащих токсичные газы (например, HCN); дожигание органических газовых загрязнений лакокрасочных цехов в камере при горении природного газа. В последнем случае время пребывания газа в камере должно быть не менее 0,5–0,7 с; эффективность очистки – 90–99%. Недостаток дан-

112

ного способа – образование оксидов азота при избытке воздуха и высокой температуре пламени (до 1300 оС).

Термическое окисление применяют тогда, когда газовые выбросы имеют высокую температуру, а также дефицит кислорода или когда концентрация горючих примесей низка и не обеспечивает теплоту, необходимую для поддержания пламени. При этом время пребывания газа в камере должно составлять 0,3–0,8 с, газ должен хорошо перемешиваться с кислородом воздуха за счет турбулентного движения, температура при окислении углеводородов должна быть 500–760 оС, оксида углерода – 680–800 оС. Достоинство способа – относительно низкая температура очистки, что позволяет избежать образования оксидов азота.

Каталитическое окисление. Этот способ отличается от термического, во-первых, более низкой температурой процесса окисления, 300–400 оС, во-вторых, высокой скоростью его протекания, доли секунды, что позволяет значительно уменьшить размеры реактора. Катализаторами могут быть платиновые металлы, оксиды меди, марганца и др. Платиновые металлы, обычно в количестве сотых долей процента от массы катализатора, наносятся на поверхность спиралей, пластин, шариков, изготовленных из нихрома, никеля, оксида алюминия.

Об активности катализатора судят по объемной скорости каталитического процесса w (ч–1), которая представляет отношение объема газа Vg 3/ч), очищаемого в единицу времени, к объему Vkat 3), занимаемому катализатором: w = Vg / Vkat. Обычно эффективность очистки в 85–95% достигается при объемной скорости газового потока от 2000 до 60 000 ч–1. Каталитическая активность окисления углеводородов возрастает в следующем ряду: ароматические углеводороды < парафины разветвленного строения < парафины линейного строения < олефины < ацетиленовые углеводороды.

Пример. Катализатор – нихромовая проволока диаметром 0,4–0,5 мм, свитая в спираль диаметром 4–5 мм, с нанесенной пленкой платины и палладия. При температуре 350–450 оС и объемной скорости 30–60 тыс. ч–1 он позволяет практически полностью окислять примеси этилена, пропилена, бутана, пропана, ацетальальдегида, метилового, этилового, пропилового и других спиртов, ацетона, бензола, толуола, ксилола и т.п.

На рисунке 4.4а приведена схема каталитического реактора для окисления толуола. Воздух, содержащий толуол, сначала по-

113

догревается горячими, отходящими газами в рекуператоре 5. Затем он поступает в камеру 3, где подогревается пламенем горелки до 250–350 оС. Эта температура оптимальна для каталитического окисления толуола на поверхности катализатора 1 в камере 4. В качестве катализатора используется природная марганцевая руда (пиромзит) в виде гранул размером 2–5 мм, активированных азотнокислым палладием. При каталитическом окислении толуола кислородом воздуха образуются СО2 и водяные пары. Перед выбросом в атмосферу горячая парогазовая смесь охлаждается в теплообмен- нике-рекуператоре 5, через который проходит поток входящего в аппарат очищаемого газа.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1а

 

 

 

 

 

 

 

1б

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Природный

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Выход

Вход

 

 

 

 

 

 

 

 

Выход

 

 

 

 

 

 

 

 

 

 

 

 

газ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

газа

газа

 

 

 

 

 

 

 

 

 

 

газа

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

4 1

 

 

 

Вход

 

 

 

газа 5

Воздух

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

б

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 4.4. Схемы каталитических реактора (а) и нейтрализатора (б): 1 – катализатор; 2 – горелка; 3 – подогреватель;

4 – контактная камера; 5 – рекуператор

Эффективность очистки составляет 95–98% при объемной скорости процесса 8–10 тыс. ч–1. Расход природного газа – 3,5–4 м3 на 1000 м3 очищаемого воздуха.

Выбор метода очистки газа зависит от следующих факторов: природы и концентрации загрязнителей, требуемой степени очистки, фонового загрязнения окружающей атмосферы, объемов очищаемых газов и их температуры, требуемых финансовых и технических затрат, наличия необходимого оборудования, сорбента, катализатора, природного газа и т.п., возможности утилизации продуктов улавливания и потребности в них.

4.2.4. Очистка выбросов автотранспорта

Автотранспорт является главным загрязнителем городской атмосферы, в больших городах – на 60–90%. Автомобильные выхлопные газы – это смесь многих веществ (до 200). Их примерный состав (объемные проценты): газы воздуха – азота около 75% и

114

кислорода 5–15%; газы от сгорания топлива: диоксида углерода CO2 – 5–10%, воды – 1–5%, водорода – 0–5%, загрязняющих и токсичных веществ – 1–15%. Основными компонентами смеси вредных веществ являются: оксид углерода СО – 30–70%, углеводороды – 2–20%, оксиды азота – 1–9%. Они также содержат альдегиды, сажу (дизельные двигатели), соединения свинца, бензпирен и др. Доля несгоревших углеводородов и особенно СО резко возрастает (в 10–15 раз) при малых оборотах двигателя во время разгона, торможения, при остановках у светофора, в заторах и т.п.

Мероприятия по снижению выбросов автотранспорта делят на следующие три группы.

1.Градостроительные мероприятия: а) строительство ав-

томагистралей в обход городов и населенных пунктов; б) изоляция зданий от дорог, тротуаров многорядными посадками кустов и деревьев; в) размещение жилых и особенно детских учреждений в глубине кварталов, подальше от дорог; г) сооружений транспортных развязок на разных уровнях, магистралей-дублеров.

2.Организация движения городского транспорта: а) огра-

ничение проезда грузовых машин по городу; б) организация оптимальной работы светофоров («зеленая волна») и транспортных развязок; в) оптимизация скорости движения машин (при 60 км/час – наименьшие загрязнения); г) расширение перевозок пассажиров электротранспортом.

3.Технические мероприятия: а) регулировка двигателей внутреннего сгорания, особенно состава смеси, поступающей в цилиндры; б) снижение, замена и полное исключение свинца в топливе; в) добавление в топливо присадок, снижающих содержание CO, альдегидов, сажи в выхлопных газах; г) замена бензина метанолом, сжатым и сжиженным газом, а еще лучше – водородом; д) нейтрализация (обезвреживание) выхлопных газов; е) фильтрация выхлопных газов дизелей от сажи; ж) замена обычных автомобилей электромобилями.

Примеры. Добавки к бензину смеси спиртов уменьшают содержание CO у карбюраторных двигателей. Добавки, содержащие барий, снижают выброс сажи из дизельных двигателей на 70–90%. Горячие водяные пары способствуют более полному сгоранию топлива, уменьшают детонацию. Замена жидкого топлива на газы, которые сгорают практически полностью, уменьшает содержание CO в выхлопных газах в 3–4 раза.

115

Очистка выхлопных газов. Очистка выхлопных газов от загрязнений – наиболее реальный и перспективный путь уменьшения загазованности городской атмосферы. Применение находят два способа очистки: нейтрализация загрязнений растворами реагентов; каталитическая нейтрализация примесей выхлопных газов.

Жидкостная нейтрализация – это взаимодействие токсич-

ных веществ с раствором сульфита Na 23 или карбоната натрия Na 2CO3 при пропускании через раствор выхлопных газов. Эффективность очистки составляет: от оксида серы SO2 – до 100%, альдегидов – 50–98%, оксидов азота – около 30–50%, сажи – 60–80%. Недостатки способа: большие размеры и масса нейтрализатора, нет очистки от оксида углерода CO, мала эффективность очистки от оксидов азота. Раствор надо часто менять, жидкость интенсивно испаряется.

Каталитическая нейтрализация – это восстановление и окисление примесей выхлопных газов с образованием безвредных паров воды и газов: азота, СО2. Для восстановления оксидов азота применяют катализаторы на основе меди, хрома, кобальта, никеля и их сплавов. Для окисления СО и углеводородов используются катализаторы из платиновых металлов.

На рисунке 4.4б показана схема двухкамерного каталитического нейтрализатора. В первой камере помещен восстановительный катализатор из медно-никелевого сплава (1а), во второй камере – окислительный, платиновый (1б). Сначала в восстановительной среде выхлопных газов оксиды азота (в основном NO) восстанавливаются до свободного азота:

NO + CO = ½N2 + CO2; NO + H2 = ½N2 + H2O.

Во второй части аппарата в газовый поток вводится воздух, кислород которого окисляет, с участием платинового катализатора, оксид углерода и углеводороды:

CO + ½O2 = CO2; CnHm + (n + ¼ m)O2 = nCO2 + ½ mH2O.

Каталитические нейтрализаторы уменьшают содержание СО на 70–90%, углеводородов – на 50–85%, оксидов азота – на 70– 85%.

Улавливание сажи. Выпуск дизельных грузовых и легковых автомобилей в мире постоянно растет. Основной недостаток дизелей, связанный с использованием высокомолекулярных углеводородов, – большое количество сажи в выхлопных газах. Для улав-

116

ливания сажи используют фильтры в виде сотовой конструкции из ячеек прямоугольного сечения (рис. 4.5а) или в виде нескольких последовательно расположенных пористых перегородок (рис. 4.5б).

Вход

Выход

Вход

Выход

Ячейка

Фильтр

а

б

Рис. 4.5. Схемы сотового (а) и перегородчатого (б) фильтров сажи

Материал сотового фильтра – пористый кордиерит. Он механически прочен, химически стоек, термически стабилен, в 30–50 раз уменьшает содержание твердых частиц (эффективность очистки до 75%). Регенерацию фильтра проводят путем сжигания сажи при нагреве фильтра до 500 оС примерно через 100 км пробега, заменяют его через 10000 км пробега.

Другие методы. Это мембранные методы раздельного улавливания газов, например, водорода – палладиевой мембраной, органических растворителей из воздушных выбросов покрасочных камер – мембранным модулем из полидиметилсилооксана на полисульфоне. Для дезодорации (лат. des – уничтожать, odor – запах) дурно пахнущих газовых выбросов используют их обработку озоном, а также биохимические методы. Последние методы очистки газов основаны на способности микроорганизмов употреблять в своей жизнедеятельности различные органические и неорганические соединения, что приводит к их разрушению и преобразованию. Эти процессы будут рассмотрены в следующем разделе, посвященном очистке от загрязнений сточных вод.

4.3.Методы очистки воды от загрязнений

4.3.1.Общие сведения

Источники загрязнения воды и виды загрязнителей гид-

росферы приведены в п. 2.2.3. Ими являются атмосферные и талые воды городов, бытовые и промышленные сточные воды, животноводческие стоки и грунтовые воды, загрязненные удобрениями и

117

пестицидами. Основные загрязнители морей – разливы нефти из танкеров, стоки прибрежных городов.

Критерии качества воды. Качество воды – характеристика свойств и состава воды, определяющая ее пригодность для конкретных видов водопользования. Критерий качества воды – признак, по которому оценивается качество воды.

Взависимости от прозрачности воды, содержания в ней кислорода, нитратов, аммиака определяют 4 класса воды: I – чистая питьевая вода; II – чистая техническая вода; III – умеренно загрязненная вода для водопоя скота, пригодная для промышленных нужд; IV – недопустимо загрязненная вода.

Втаблице 4.2 приведены нормативы качества питьевой воды.

Таблица 4.2 Нормативы качества питьевой воды (СанПиН 2.1.4.559-96)

Показатель

Ед. изм.

ПДК,

Вещество

ПДК,

Вещество

ПДК,

 

 

не более

 

мг/л

 

мг/л

Кислотность

рН

6,5–8,5

Нефть

0,1

Марганец

0,1

Сухой остаток

мг/ л

1000

ПАВ*

0,5

Медь

1,0

Общая

ммоль/л

 

Альдегид2*

0,05

Молибден

0,25

жесткость

7

Акриламид

2,0

Мышьяк

0,05

Окисляемость

мгО2 / л

5

Анилин

0,2

Никель

0,1

α-радио-

 

 

Хлор своб.

0,3–0,5

Ртуть

1 10–4

активность

Бк/л

0,1

Озон остат.

0,05

Свинец

0,03

β-радио-

 

 

ССl4

0,006

Селен

0,01

активность

Бк/л

1,0

ДДТ, изомеры

0.002

Стронций

7,0

Запах.

 

 

γ-ГХЦГ3*

0,002

Хром

0,05

Привкус

Баллы

2

2,4-Д4*

0,03

Цинк

5,0

Цветность

град

20

Фенолы

0,25

Нитраты

45

Мутность

мг/л

1,5

Алюминий

0,5

Силикаты

10

Микробное

 

 

Барий

0,1

Сульфаты

500

число

В 1 мл

50

Берилий

2 10–4

Фосфаты

3,5

Колифаги, спо-

Отсут-

Бор

0,5

Фториды

1,2–1,5

ры, бактерии

 

ствие

Железо

0,3

Хлориды

350

 

 

 

Кадмий

0,001

Цианиды

0,035

 

 

 

 

 

 

 

* – поверхностно-активные вещества; 2*

– формальдегид;

3* – линдан; 4* – 2,4-дихлорфено-уксусная кислота.

 

 

Сточная вода – это вода, бывшая в бытовом, промышленном или сельскохозяйственном употреблении или прошедшая с загрязнением через какую-либо территорию.

118

По размеру твердых частиц в сточных водах различают:

грубые суспензии – >100 мкм, тонкие суспензии – 10–100 мкм, весьма тонкие суспензии – 1–10 мкм, мути – 0,1–1 мкм, коллоиды –

<0,1 мкм.

Производственные стоки по содержанию примесей делят на

4группы: I – до 0,5 г/л; II – 0,5-5 г/л; III – 5-30 г/л; IV – более 30 г/л.

Втехнологических процессах образуются различные сточные воды: реакционные, промывные, охлаждающие воды, маточные растворы, водные экстракты, абсорбционные жидкости и др.

Наибольшее количество воды в промышленности – 65–80% – тратится на охлаждение веществ в теплообменниках. В промышленных стоках наибольшую долю составляют сточные воды цел- люлозно-бумажной промышленности, около 20%, химической промышленности – 17%, теплоэнергетики – 13%.

Вмире ежегодно сбрасывается в водоемы около 30 млрд м3 неочищенных вод.

ВРоссийской Федерации в 90-х гг. в поверхностные водоемы ежегодно сбрасывается от 28 до 24 млн м3 загрязненных сточных вод. Из них сбросы городских канализаций составляют около 50%, промышленные – 35%, сельскохозяйственные – 13%.

Норма водопотребления – это оптимальное количество воды, необходимое для производственного процесса, установленное

на основании передового опыта или научно обоснованного расчета. Например, средние удельные расходы воды (м3/т) на производство стали составляют 220–245, чугуна – 280, никеля – 4000, серной кислоты – около 100, пластмассы – 500–1000.

Норма водоотведения – это установленное среднее количество сточных вод, отводимое от производства в водоем при опти-

мальной норме водопотребления. Например, укрупненная норма водоотведения при выплавке 1 т стали или чугуна равна 0,1 м3 сточных вод, при добыче нефти – 0,4 м3, угля – 0,3 м3, при производстве соды – 8–10 м3, вискозного волокна – 230 м3, при выработ-

ке 1 МВт ч электроэнергии – 5 м3.

Нормирование выпуска сточных вод. Допустимая сте-

пень загрязнения сточных вод и их сбрасываемое количество зависят от возможностей водоема, куда они сбрасываются, и от санитарных требований к воде этого водоема. Это количество определяется расчетами в соответствии с технологическим регламентом.

119

Расчет допустимого состава сточных вод по концентрации взвешенных веществ Св,взв проводится по формуле ПДС = Qст Cст:

Со,взв Св,взв + nПДКвзв,

(4.7)

где Со,взв – допустимая концентрация взвешенных частиц в сточной воде; Св,взв – их концентрация в водоеме до сброса сточной воды; ПДКвзв – предельно допустимая концентрация взвешенных веществ в водоеме; n – кратность разбавления сточных вод в водоеме.

Расчет состава сточных вод по концентрации вредных веществ:

Со,A n(Сm,A Св,A) + Св,A,

(4.8)

где Со,A – допустимая концентрация вредного вещества A; Св,A – концентрация вредного вещества A в воде водоема до сброса сточных вод; n – кратность разбавления; Сm,A – максимально допустимая концентрация вредного вещества A в присутствии других i-х вредных веществ одного лимитирующего показателя вредности,

Сm,A = ПДКA [1 – Σ (Сm,i–A / ПДКi)].

Расчет кратности разбавления сточных вод:

n = (Со Св) / (С Св),

(4.9)

где Со – концентрация загрязняющих веществ в сточной воде; Св и С – концентрация загрязняющих веществ в водоеме до и после спуска в него сточных вод.

Расчет кратности разбавления для водоемов с направленным течением:

n = (mQв + Qv) / Qv,

(4.10)

где Qв – объем воды, расходуемый водоемом; Qv – объем сбрасываемых сточных вод; m – коэффициент смешения, показывающий долю воды в водоеме, затрачиваемой на смешение.

При условии полного перемешивания сточных вод концентрация примесей в водоеме С в произвольный момент времени равна:

С = t(Co Qv + ΣCв Qв) /V,

(4.11)

где V – объем водоема; t = V / (Qv + ΣQв Qп) – период полного обмена воды в водоеме; Q п – потери чистой воды водоема, например при испарении.

120