Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Изложение всего материала кратко.doc
Скачиваний:
234
Добавлен:
02.05.2014
Размер:
380.42 Кб
Скачать

Линейные операторы

Пусть X,Yлинейные нормированные пространства. Понятие линейного оператора А: XY означает справедливость тождеств А(x1+x2) = А(x1) + А(x2), А(x) = А(x). Нас будут интересовать непрерывные линейные операторы. Их множество будем обозначать символом L(X,Y). В этом пункте в частности будет установлено, что L(X,Y) можно наделить структурой линейного нормированного пространства. Приведем несколько примеров.

  1. Рассмотрим квадратную матрицу А = (аij) (i=1,2,…,n; j=1,2,…,n). Рассмотрим отображение А: , действующее по правилуА(х1,…,хn) = . Из свойств матриц и векторов следует линейность оператора А. Напомним что сходимость в пространстве покоординатная, т.е.х(n)х(0), если приi=1,…,n. Отсюда следует, что А(х(n))  А(х(0)), т.е. оператор А непрерывный. Обратно, любое линейное отображение А: порождается некоторой матрицейА и автоматически является непрерывным.

  2. Пусть K(t,s) функция, непрерывная на квадрате 0  t  1, 0  s  1. Сопоставим функции х(t) C функцию y(s) =Функцияy(s) непрерывная, т.е. y(s) C. Тем самым определен оператор A: CC. Его линейность следует из свойств интеграла. Далее, если (х1,х2) = maxх1(t) х2(t)<, то y1(t)y2(t)

Это неравенство означает, что рассматриваемый оператор непрерывный. Такой оператор называется интегральным с ядром K(t,s).

ОПРЕДЕЛЕНИЕ 20. Линейный оператор А: X Y называется ограниченным, если существует такое положительное число Р, что ||Аx||  Р||x||. Здесь ||Аx||  норма элемента в пространстве Y, ||x||  норма элемента в пространстве X.

ТЕОРЕМА 13. Ограниченность линейного оператора равносильна его непрерывности.

Удивительно, что множество линейных непрерывных операторов L(X,Y) можно наделить структурой линейного нормированного пространства.

Если А,B L(X,Y), то суммой А+B линейных операторов называется оператор, действующий по правилу (А+B)(х) = Ах +Bх.

Если АL(X,Y), R, то произведением оператора на число называется оператор (А)(х) = (Ах). Поскольку в пространстве Y выполняются аксиомы линейного пространства, то множество L(X,Y) с введенными операциями является линейным пространством. Нулевым является оператор 0(х) = 0 для всех х.

Определим норму оператора как . Поскольку оператор ограниченный, то ||Аx||  Р||x|| при некотором Р, откуда число Р является верхней гранью множества {||Аx||: ||x||  1}, т.е. по теореме о точной верхней грани норма определена.

ПРЕДЛОЖЕНИЕ 19. Определенная функция действительно является нормой.

Поскольку множество линейных непрерывных отображений имеет структуру линейного нормированного пространства, к нему применимы все результаты предыдущего раздела. Пример:

ТЕОРЕМА 14. Если Y – банахово пространства, то и пространство L(X,Y) банахово.

Сопряженные пространства и слабая сходимость

Линейный оператор А: XR называется линейным функционалом. Пространство L(X, R) банахово (п. Error: Reference source not found), поскольку пространство вещественных чисел полное. Линейные ограниченные функционалы будем обозначать f(x). Как и раньше, норма линейного функционала определяется формулой .

ОПРЕДЕЛЕНИЕ 21. Пространство L(X, R) называется пространством, сопряженным к X и обозначается X*.

Конечномерные пространства.

Если (a1,…,an) базис в п-мерном пространстве L, то линейный функционал f однозначно задается значениями (f(a1),…, f(an)), поскольку для любого вектора значение функционала задается формулой. Мы будем использовать обозначениеfi = f(ai). Обратно, любой набор п чисел (f1,…, fn) задает линейный оператор в п-мерном пространстве описанным образом. Таким образом, пространством, сопряженным с п-мерным, является также п-мерное пространство. По сути, это описание на новом языке факта, который излагался в курсе линейной алгебры. Но теперь этого мало: мы рассматриваем пространства, наделенные нормой.

При p > 1 пространством, сопряженным к , является пространство, гдеЕслиp=2, то и q=2, т.е. пространство является сопряженным к самому себе. Этот факт будет далее обобщен.

Сопряженным к пространству является пространство. Действительно,

Пространства последовательностей.

Ограничимся формулировками некоторых результатов. При p>1 (lp)*= lq, где

(l1)*=m. При этом, m*l1.

Функциональные пространства.

Сопряженным к пространству С является пространство функций с ограниченной вариацией (подробности опускаем). К пополненному пространству Lp сопряженным является пространство Lq (p и q связаны обычным соотношением примера 1).

Гильбертовы пространства.

ТЕОРЕМА 15. Пространство, сопряженное к гильбертову пространству Н, изометрично Н.

ОПРЕДЕЛЕНИЕ 22. Последовательность {xn} в линейном нормированном пространстве слабо сходится к вектору x0, если для любого непрерывного функционала f справедливо утверждение f (xn)  f (x0).

Из непрерывности функционала следует, что из условия xnx0 по норме (в старом смысле) следует слабая сходимость. Приведем пример, который показывает, что обратное неверно.

Рассмотрим в гильбертовом пространстве l2 последовательность векторов х1=(1,0,…,0,…), х2=(0,1,0,…,0,…),… (у вектора хn п-я координата равна единице, остальные нулевые). Отмечалось (п. Error: Reference source not found), что эта последовательность не сходится в метрике пространства l2. Пусть fl2. Тогда (fn)= fn0, поскольку ряд сходится. Тем самымхn слабо сходится к 0.