Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по КСЕ(1-ый рубежный контроль).doc
Скачиваний:
3
Добавлен:
23.11.2019
Размер:
269.31 Кб
Скачать

Первая научная революция. Гелиоцентрическая система мира.

Переломные этапы в генезисе научного знания получили наименование научных революций. Первая научная революция произошла в XV-XVI вв. в эпоху Возрождения. Этот период характеризовался возрождением культурных ценностей античности, расцветом искусства, утверждением идей гуманизма. Вместе с тем эпоха Возрождения отличалась существенным прогрессом науки и радикальным изменением миропонимания, которое явилось следствием появления гелиоцентрического учения великого польского астронома Николая Коперника (1473-1543 ).

В своем труде «Об обращениях небесных сфер» Коперник утверждал, что Земля не является центром мироздания и что «Солнце, как бы восседая на Царском престоле, управляет вращающимся около него семейством светил». Это был конец старой аристотелевско-птолемеевской геоцентрической системы мира. На основе большого числа астрономических наблюдений и расчетов Коперник создал новую, гелиоцентрическую систему мира, что явилось первой в истории человечества научной революцией.

Учение Коперника подрывало, опиравшуюся на идеи Аристотеля, религиозную картину мира. Последняя исходила из признания центрального положения Земли, что давало основание объявлять находящегося на ней человека центром и высшей целью мироздания. Кроме того, религиозное учение о природе противопоставляло земную материю, объявляемую тленной, преходящей – небесной, которая считалась вечной и неизменной.

ВТОРАЯ НАУЧНАЯ РЕВОЛЮЦИЯ.

XVII век ознаменовался рождением современной науки, у истоков которой стояли такие выдающиеся ученые, как Галилей, Кеплер, Ньютон.

В учении Галилео Галилея (1564-1642) были заложены основы нового механического естествознания. До Галилея общепринятым в науке считалось понимание движения, выработанное Аристотелем и сводившееся к следующему принципу: тело движется только при наличии внешнего на него воздействия, и если это воздействие прекращается, то тело останавливается. Вместо него Галилей сформулировал иной принцип: тело находится в состоянии покоя, либо движется, не изменяя направления и скорости своего движения, если на него не производится какого-либо внешнего воздействия.

Большое значение для становления механики как науки имело исследование Галилеем свободного падения тел. Он установил, что скорость свободного падения тел не зависит от их массы (как думал Аристотель), а пройденный падающим телом путь пропорционален квадрату времени падения. Галилей открыл, что траектория брошенного тела, движущегося под воздействием начального толчка и земного притяжения, является парабола. Ему принадлежит экспериментальное обнаружение весомости воздуха, открытие законов колебания маятника, немалый вклад в разработку учения о сопротивлении материалов.

Росту научного авторитета Галилея способствовали его астрономические исследования. Используя построенные им телескопы, он установил, Солнце вращается вокруг своей оси, а на его поверхности имеются пятна. У самой большой планеты Солнечной системы – Юпитера – Галилей обнаружил 4 спутника ( из 14 известных в настоящее время ). Наблюдения за Луной показали, что ее поверхность гористого строения и что этот спутник Земли имеет либрацию, т. е. видимые периодические колебания маятникового характера вокруг центра Галилей убедился, что кажущийся туманностью Млечный Путь состоит из множества отдельных звезд.

С астрономическими наблюдениями Галилея, описанными в сочинении «Звездный вестник», ознакомился и дал высокую оценку один из крупнейших математиков астрономов Иоганн Кеплер (1571-1630) в работе «Рассуждения о *Звездном вестнике*».

Кеплер занимался поисками законов небесной механики и составлением Звездных таблиц. На основе обобщения данных астрономических наблюдений он установил три закона движения планет относительно Солнца. В своем первом законе Кеплер отказывается от коперниковского представления о круговом движении планет вокруг Солнца. В этом законе утверждается, что каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Согласно второму закону Кеплера, радиус-вектор, проведенный от Солнца к планете, в равные промежутки времени описывает равные площади. Из этого закона следовал вывод, что скорость движения планеты по орбите не постоянна и она тем больше, чем ближе планета к Солнцу.

Третий закон Кеплера гласит: квадраты времен обращения планет вокруг Солнца относятся как кубы средних расстояний от него.

Вторая научная революция завершалась творчеством одного из величайших ученых в истории человечества, каковым был Исаак Ньютон (1643-1727). Его научное наследие чрезвычайно разнообразно. В него входит и создание дифференциального и интегрального исчисления, и важные астрономические наблюдения, которые Ньютон проводил с помощью собственноручно построенных зеркальных телескопов, и большой вклад в развитие оптики (дисперсия). Ньютон сформулировал три основных закона движения, которые легли в основу механики как науки.

1: Всякое тело сохраняет состояние покоя или равномерного и прямолинейного движения до тех пор, пока оно не будет вынуждено изменить его под действием каких-то сил.

2: Приобретаемое телом под действием какой-то силы ускорение прямо пропорционально этой действующей силе и обратно пропорционально массе тела.

3:Действия двух тел друг на друга всегда равны по величине и направлены в противоположные стороны.

Данная система законов движения была дополнена открытым Ньютоном законом всемирного тяготения, согласно которому все тела, независимо от их свойств и от свойств среды, в которой они находятся, испытывают взаимное притяжение, прямо пропорциональное их массам и обратно пропорциональное квадрату расстояния между ними.

МЕХАНИЧЕСКАЯ КАРТИНА МИРА

Классическое естествознание разрушило античные представления о космосе, как вполне завершенном и гармоничном мире, который обладает совершенством, целесообразностью и пр. На смену им пришла концепция бесконечной, без цели и смысла существующей Вселенной, объединяемой лишь идентичностью законов. Природа рассматривалась как сложная механическая система. В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (корпускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц- атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.

Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсолютно постоянно и всегда пребывает в покое. Время представлялось как величина, не зависящая от пространства, ни от материи.

Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. Считалось, что все физические процессы можно свести к перемещению материальных точек под действием силы тяготения, которая является дальнедействующей.

Философское обоснование механическому пониманию природы дал Р. Декарт с его концепцией абсолютной дуальности (независимости) мышления и материи, из которой следовало, что мир можно описать совершенно объективно, без учета человека-наблюдателя.

Итогом ньютоновской картины мира явился образ Вселенной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий. Отсюда и вера в то, что теоретически можно реконструировать любую прошлую ситуацию во Вселенной или предсказать будущее с абсолютной определенностью.

Механический подход к описанию природы оказался необычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно- кинетическая теория и др. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рамках механической картины мира.

Разрабатывая оптику, И. Ньютон считал свет потоком материальных частиц- корпускул. В корпускулярной теории света утверждалось, что светящиеся тела излучают мельчайшие частицы, которые движутся в соответствии с законами механики и вызывают ощущение света, попадая в глаз.

Наряду с механической корпускулярной теорией, осуществлялись попытки объяснить оптические явления на основе волновой теории, сформулированной Х. Гюйгенсом. Эта теория устанавливала аналогию между распространением света и движением волн на поверхности воды или звуковых волн в воздухе. ( дифракция, интерференция ).

В ней предполагалось наличие упругой среды, заполняющей все пространство, - светоносного эфира.