Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Линейное программирование.doc
Скачиваний:
15
Добавлен:
27.09.2019
Размер:
1.46 Mб
Скачать

Теорема 3. ( в формулировке для несимметричной двойственной задачи)

Если i-ая компонента оптимального плана исходной задачи строго положительна, то i-ое ограничение двойственной задачи при подстановке в нее оптимального плана превращается в строгое равенство

.

Если i-ая компонента оптимального плана исходной задачи равна нулю, то i-ое ограничение двойственной задачи при подстановке в нее оптимального плана имеет вид

.

Доказательство.

Еще раз вспомним симплекс-метод и симплекс-таблицу для оптимального плана. Там получалось, что если , то , если же , то .

Но. согласно предыдущей теореме,

,

то есть есть i-ая строка матрицы . Опять же, при доказательстве предыдущей теоремы было получено соотношение

,

.

Поэтому, если ,

то должно быть

и

.

Если же ,

то должно быть

, то есть

.

Теорема доказана.

Отметим в заключение, что для симметричных двойственных задач эта теорема звучит так:

Теорема 3. (в формулировке для симметричной двойственной задачи).

Если i-ая компонента оптимального плана какой-то задачи положительна, то i-ое ограничение двойственной ей задачи, при подстановке в не оптимального плана, превращается в строгое равенство.

Наоборот, если i-ое ограничение какой-то задачи, при подстановке в него оптимального плана, превращается в строгое неравенство, то i-ая компонента оптимального плана двойственной ей задачи равна нулю.

 

На основе теории двойственности основан ряд методов решения задач линейного программирования. В частности, на ее базе строится метод решения рассматриваемой ниже транспортной задачи.

3.3. Двойственный симплекс-метод

Это название закрепилось за методом последовательного улучшения, применяемым к задаче, записанной в виде:

Определение 1.5. Решение системы линейных уравнений, определяемое базисом, называется псевдопланом задачи, если для любого j.

Двойственный симплекс-метод позволяет за конечное число итераций найти оптимальный план двойственно невырожденной задачи, или обнаружить, что множество планов пусто.

Теорема 1.14. Если в псевдоплане, определяемом базисом из mвекторов, есть хотя бы одно отрицательное число, для которого все координаты вектора больше либо равны 0.

Теорема 1.15. Если в псевдоплане, определяемом базисом из m векторов, есть хотя бы одно отрицательное число, для которого хотя бы одна координата вектора меньше 0, то можно перейти к новому псевдоплану, при котором значение целевой функции уменьшится.

Теорема 1.16. При решении задачи двойственным симплекс-методом одновременно строится и оптимальный план другой (двойственной) задачи или устанавливается неограниченность снизу.

Алгоритм двойственного симплекс-метода

Этап 1

Находим псевдоплан задачи.

Этап 2

Проверяем псевдоплан на оптимальность. Если псевдоплан оптимален, то найдено решение задачи. В противном случае либо устанавливают неразрешимость задачи, либо переходят к новому псевдоплану.

Этап 3

Выбираем направляющую строку с помощью определения наибольшего по абсолютной величине компоненты плана и направляющий столбец находят при подсчете наименьшей по абсолютной величине отношения элементов строки разностей к соответствующим отрицательным элементам направляющей строки.

Этап 4

Находим новый псевдоплан и продолжают действия с этапа 2.