Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matematika_bilety.docx
Скачиваний:
13
Добавлен:
21.09.2019
Размер:
911.77 Кб
Скачать
  1. Интегрирование тригонометрических функций.

1°. Интегралы вида

находятся с помощью тригонометрических формул

2°. Интегралы вида

где m и n - четные числа находятся с помощью формул понижения степени

Если хотя бы одно из чисел m или n - нечетное, то полагают (пусть m = 2k + 1)

Вопрос 16.

Понятие определенного интеграла. Предел интегральной суммы.

  1. Понятие определенного интеграла.

Определенный интеграл (Римана) позволяет распространить формулу площади прямоугольника на площадь более или менее произвольной плоской геометрической фигуры. В основе понятия определенного интеграла лежит так называемая интегральная сумма, определяемая следующим образом. Пусть задана функция , определенная на отрезке . Разобъем отрезок произвольным образом на частей , , ( , ). В частности, можно разбить на равных частей, тогда длина каждого отрезка разбиения будет равна . В общем случае, пусть

.

Возьмем, опять же произвольным образом, внутри каждого из отрезков по точке . Интегральной суммой функции на по разбиению называется число

Если , то интегральная сумма есть площадь фигуры, состоящей из прямоугольников со сторонами и , . Интуитивно ясно, что, чем меньше максимальная длина отрезков разбиения , тем точнее эта фигура из прямоугольников приближает криволинейную трапецию с основаниями , и “боковыми сторонами” , . Интеграл от функции по отрезку есть предел по всевозможным разбиениям , когда .

Предел понимается здесь в обычном смысле: число называется определенным интегралом от по (обозначается как ), если для произвольного найдется такое , что, как только разбиение отрезка удовлетворяет условию , интегральная сумма , отвечающая этому разбиению, будет отличаться от не больше, чем на : .

  1. Предел интегральной суммы

Пусть функция у=ƒ(х) определена на отрезке [а; b], а < b. Выполним следующие действия.

1. С помощью точек х0=а, x1, х2, ..., хn = В (х0 <x1 < ...< хn) разобьем отрезок [а, b] на n частичных отрезков [х01], [x1; х2],..., [хn-1n] (см. рис. 167).

2. В каждом частичном отрезке [xi-1;xi], i = 1,2,...,n выберем произвольную точку сi є [xi-1; xi] и вычислим значение функции в ней, т. е. величину ƒ(сi).

3. Умножим найденное значение функции ƒ (сi) на длину ∆xi=xi-xi-1 соответствующего частичного отрезка: ƒ (сi) • ∆хi.

4. Составим сумму Sn всех таких произведений:

Сумма вида (35.1) называется интегральной суммой функции у = ƒ(х) на отрезке [а; b]. Обозначим через λ длину наибольшего частичного отрезка: λ = max ∆xi(i = 1,2,..., n).

5. Найдем предел интегральной суммы (35.1), когда n → ∞ так, что λ→0.

Если при этом интегральная сумма Sn имеет предел I, который не зависит ни от способа разбиения отрезка [а; b] на частичные отрезки, ни от выбора точек в них, то число I называется определенным интегралом от функции у = ƒ(х) на отрезке [а; b] и обозначается Таким образом,

Числа а и b называются соответственна нижним и верхним пределами интегрирования, ƒ(х) — подынтегральной функцией, ƒ(х) dx — подынтегральным выражением, х — переменной интегрирования, отрезок [а; b] — областью (отрезком) интегрирования.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]