Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Алгебра.docx
Скачиваний:
16
Добавлен:
17.04.2019
Размер:
1.73 Mб
Скачать

Действия над комплексными числами

  • Сравнение

a + bi = c + di означает, что a = c и b = d (два комплексных числа равны между собой тогда и только тогда, когда равны их действительные и мнимые части).

  • Сложение

(a + bi) + (c + di) = (a + c) + (b + d)i.

  • Вычитание

(a + bi) − (c + di) = (a − c) + (b − d)i.

  • Умножение

  • Деление

Запишем квадратное уравнение в общем виде:  kx2 + px + q = 0,  где k, p, q - действительные числа. Из курса элементарной математики известно, что если D > 0, то уравнение имеет два действительных корня, а если D = 0, то один. Случай при D < 0 в элементарной математике не рассматривается, а просто делается вывод, что корней нет. Однако с использованием комплексных чисел можно доопределить множество решений квадратного трехчлена при D < 0. Если это так, то будем говорить, что уравнение имеет комплексные корни. При этом обозначают и корни находят по формуле 

50) Тригонометрическая и показательная формы

Если вещественную x и мнимую y части комплексного числа выразить через модуль r = | z | и аргумент   (x = rcos φ, y = rsin φ), то всякое комплексное число z, кроме нуля, можно записать втригонометрической форме

z = r(cos φ + isin φ).

Также может быть полезна показательная форма записи комплексных чисел, тесно связанная с тригонометрической через формулу Эйлера:

z = reiφ,

г де eiφ — расширение экспоненты для случая комплексного показателя степени.

Отсюда вытекают следующие широко используемые равенства:

Формула Эйлера названа в честь Леонарда Эйлера, который её ввёл, и связывает комплексную экспоненту с тригонометрическими функциями.

Формула Эйлера утверждает, что для любого вещественного числа x выполнено следующее равенство:

,

где e — основание натурального логарифма,

i — мнимая единица.

Доказательство формулы Эйлера достаточно тривиально. Разложим функцию eix в ряд Тейлора по степеням x. Получим:

Но

Поэтому 

5 1) Та запись комплексного числа, которую мы использовали до сих пор, называется алгебраической формой записи комплексного числа. Часто бывает удобна немного другая форма записи комплексного числа. Пусть   и φ = arg z. Тогда по определению аргумента имеем: 

Отсюда получается 

z = a + bi = r(cos φ + i sin φ).

Такая форма называется тригонометрической формой записи комплексного числа. Как видно, для того, чтобы перейти от алгебраической формы записи комплексного числа к тригонометрической форме, нужно найти его модуль и один из аргументов.

Пример 1

Записать число   в тригонометрической форме.

Решение

Найдём модуль этого числа:   Аргумент данного числа находится из системы 

Значит, один из аргументов числа   равен   Получаем: 

Ответ. 

Арифметические действия над комплексными числами, записанными в тригонометрической форме, производятся следующим образом. Пусть z1 = r1(cos φ1 + i sin φ1) иz2 = r2(cos φ2 + i sin φ2). Имеем: 

Видно, что в тригонометрической форме операции умножения и деления производятся особенно просто: для того, чтобы перемножить (разделить) два комплексных числа, нужно перемножить (разделить) их модули и сложить (вычесть) их аргументы.

Отсюда следует, что для того чтобы перемножить n комплексных чисел, нужно перемножить их модули и сложить аргументы: если φ1, φ2, ..., φn – аргументы чисел z1z2, ..., zn, то 

В частности, если все эти числа равны между собой, то получим формулу, позволяющую возводить комплексное число в любую натуральную степень.

53) Квадратичная форма — функция на векторном пространстве, задаваемая однородным многочленом второй степени от координат вектора

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]