Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 сем. контр. раб.№1.doc
Скачиваний:
23
Добавлен:
21.11.2019
Размер:
1.69 Mб
Скачать

Контрольные варианты к задаче 1.

Даны точки А, В и С. Разложить вектор по ортам Найти длину, направляющие косинусы и орт вектора .

1.

2.

3.

.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Задача 2. Если даны векторы то скалярное произведение .

Т огда ; проекция вектора на направление вектора равна , условие перпендикулярности ненулевых векторов выглядит следующим образом: Условие коллинеарности векторов: .

Пример 2. Даны вершины треугольника Найти угол при вершине А и проекцию вектора на сторону АС. С

В нутренний угол при вершине А образован векторами ,

А В

Т огда

Проекция на направление вектора :

Контрольные варианты к задаче 2

Даны точки А, В и С из задания 1. Найти угол при вершине А и проекцию вектора на сторону АС.

Задача 3. Площадь параллелограмма, построенного на векторах

можно найти по формуле а площадь треугольника, построенного

на этих векторах: где

Определитель второго порядка вычисляется по формуле: .

Пример 3. Даны вершины треугольника Найти его площадь и длину высоты, опущенной из вершины С.

. Находим векторы

Векторное произведение

Длина полученного вектора равна :

Так как где длина высоты, опущенной из вершины С на сторону АВ, .

Контрольные варианты к задаче 3

Даны точки А, В и С из задания 1, которые являются вершинами .

Найти его площадь и длину высоты, опущенной из вершины С.

Задача 4. Если даны координаты , то смешанное произведение векторов вычисляют по формуле

.

Объемы параллелепипеда и тетраэдра (треугольной пирамиды), построенных на векторах находятся с помощью смешанного произведения векторов:

,

Если > 0, то тройка векторов - правая.

Если < 0, то тройка левая.

Если = 0, то векторы компланарны.

Пример 4. Дан тетраэдр построенный на векторах и Найти высоту, проведенную из вершины на грань ABD.

Объем равен произведению площади основания на высоту:

находится также по формуле , поэтому

.

Вычислим векторное произведение =

Тогда