Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
моя лекц метрол 10.12г..doc
Скачиваний:
2
Добавлен:
21.11.2019
Размер:
177.15 Кб
Скачать

Методы измерений

Метод измерения – это способ экспериментального определения значения физической величины, т. е. совокупность используемых при измерениях физических явлений и средств измерений.

Метод непосредственной оценки заключается в определения значения физической величины по отсчетному устройству измерительного прибора прямого действия. Например – измерение напряжения вольтметром.

Этот метод является наиболее распространенным, но его точность зависит от точности измерительного прибора.

Метод сравнения с мерой – в этом случае измеряемая величина сравнивается с величиной, воспроизводимой мерой. Точность измерения может быть выше, чем точность непосредственной оценки.

Различают следующие разновидности метода сравнения с мерой:

Метод противопоставления, при котором измеряемая и воспроизводимая величина одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между величинами. Пример: измерение веса с помощью рычажных весов и набора гирь.

Дифференциальный метод, при котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой. При этом уравновешивание измеряемой величины известной производится не полностью. Пример: измерение напряжения постоянного тока с помощью дискретного делителя напряжения, источника образцового напряжения и вольтметра.

Нулевой метод, при котором результирующий эффект воздействия обеих величин на прибор сравнения доводят до нуля, что фиксируется высокочувствительным прибором – нуль-индикатором. Пример: измерение сопротивления резистора с помощью четырехплечевого моста, в котором падение напряжения на резисторе с неизвестным сопротивлением уравновешивается падением напряжения на резисторе известного сопротивления.

Метод замещения, при котором производится поочередное подключение на вход прибора измеряемой величины и известной величины, и по двум показаниям прибора оценивается значение измеряемой величины, а затем подбором известной величины добиваются, чтобы оба показания совпали. При этом методе может быть достигнута высокая точность измерений при высокой точности меры известной величины и высокой чувствительности прибора. Пример: точное точное измерение малого напряжения при помощи высокочувствительного гальванометра, к которому сначала подключают источник неизвестного напряжения и определяют отклонение указателя, а затем с помощью регулируемого источника известного напряжения добиваются того же отклонения указателя. При этом известное напряжение равно неизвестному.

Метод совпадения, при котором измеряют разность между измеряемой величиной и величиной, воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов. Пример: измерение частоты вращения детали с помощью мигающей лампы стробоскопа: наблюдая положение метки на вращающейся детали в моменты вспышек лампы, по известной частоте вспышек и смещению метки определяют частоту вращения детали.

Средства измерений

Средство измерений – техническое средство (или их комплекс), предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимается неизменным в пределах установленной погрешности и в течение известного интервала времени.

По метрологическому назначению средства измерений подразделяются на:

- рабочие средства измерений, предназначенные для измерений физических величин, не связанных с передачей размера единицы другим средствам измерений. РСИ являются самыми многочисленными и широко применяемыми. Примеры РСИ: электросчетчик - для измерения электрической энергии; теодолит – для измерения плоских углов; нутромер – для измерения малых длин (диаметров отверстий); термометр – для измерения температуры;

- образцовые средства измерений, предназначенные для обеспечения единства измерений в стране.

По стандартизации подразделяются на:

- стандартизованные средства измерений, изготовленные в соответствии с требованиями государственного или отраслевого стандарта.

- нестандартизованные средства измерений – уникальные средства измерений, предназначенные для специальной измерительной задачи, в стандартизации требований к которому нет необходимости. Нестандартизованные средства измерений не подвергаются государственным испытаниям (поверкам), а подлежат метрологическим аттестациям.

По степени автоматизации – на:

- автоматические средства измерений, производящие в автоматическом режиме все операции, связанные с обработкой результатов измерений, их регистрацией, передачей данных или выработкой управляющего сигнала;

- автоматизированные средства измерений, производящие в автоматическом режиме одну или часть измерительных операций;

- неавтоматические средства измерений, не имеющие устройств для автоматического выполнения измерений и обработки их результатов (рулетка, теодолит и т. д.).

По конструктивному исполнению – на:

- меры;

- измерительные преобразователи;

- измерительные приборы;

- измерительные установки;

- измерительно-информационные системы;

Мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера. Мера выступает в качестве носителя единицы физической величины и служит основой для измерений. Примеры мер: нормальный элемент – мера Э.Д.С. с номинальным напряжением 1В; кварцевый резонатор – мера частоты электрических колебаний.

Измерительный преобразователь – средство измерений для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному наблюдению человеком (оператором). Часто используют термин первичный измерительный преобразователь или датчик. Электрический датчик – это один или несколько измерительных преобразователей, объединенных в единую конструкцию и служащих для преобразования измеряемой неэлектрической величины в электрическую. Например: датчик давления, датчик температуры, датчик скорости и т. д.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия человеком (оператором).

Измерительная установка – совокупность функционально объединенных средств измерений, предназначенная для выработки сигналов измерительной информации в форме, удобной для непосредственного наблюдения человеком и расположенная в одном месте. Измерительная установка может включать в себя меры, измерительные приборы и преобразователей, а также различные вспомогательные устройства.

Измерительно-информационная система - совокупность средств измерений, соединенных между собой каналами связи и предназначенная для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и (или) использования в автоматических системах управления.

Измерительные приборы классифицируются:

1 по роду измеряемой величины: температуры (термометры, пирометры); давления и разрежения (манометры, вакуумметры, тягонапоромеры, барометры и т.п.); количества и расхода вещества, энергии (расходомеры, счетчики); уровня (уровнемеры и сигнализаторы); состава (газоанализаторы, концентратомеры);

2 по назначению: технические (рабочие) - измерение технологических и технических параметров; контрольные - поверка технических средств измерения; лабораторные - для применения в экспериментальной технике; образцовые - поверка контрольных измерительных приборов; эталонные - поверка образцовых приборов;

3 по характеру представления информации : показывающие - имеющие только визуальный отсчет результата измерения; регистрирующие -имеющие устройства для регистрации (записи) результата измерения; индикаторные – показывающие только наличие или отсутствие сигнала; обработки информации;

4 по дистанционному признаку: местного контроля; дистанционного контроля; телеметрического контроля;

5 по характеру регистрации и контроля измеряемого сигнала во времени: непрерывного (аналогового) действия; дискретного действия;

6 по принципу действия: механические; электрические; гидравлические; пневматические; радиоактивные и т.п.

7 по условиям измерения: стационарные; переносные;

8 по габаритам: нормальные (полногабаритные); малогабаритные; миниатюрные;

9 по числу контролируемых величин: одноточечные; многоточечные; многоканальные.

Определенную нагрузку в приборах выполняют измерительные устройства - части приборов, имеющие обособленную конструкцию и самостоятельное назначение (например регистрирующее устройство с лентой, лентопротяжным механизмом и пишущим элементом).

Для повышения чувствительности и снижения влияющих величин при измерении используются измерительные принадлежности (усили­тели, термостаты и т.п.).

Государственная система приборов.

Необходимость минимизации расходов на изме­рения и контроль потребовали системного подхода к разрабатываемым средствам измере­ния, поэтому, в 1960 г. было принято решение о создании Государственной системы промышленных при­боров и средств автоматизации (ГСП) ГОСТ 12997-84. "Изделия ГСП. Общие техничес­кие условия", а с 1961 г. начались работы по ее реализации.

Методологическая основа ГСП базируется на системе 200 государственных стандартов, обеспечивающих общие технические требования, сигналы, правила сопряжения и конст­руктивного оформления.

По функциональному признаку все изделия ГСП разделены на следующие четыре группы устройств:

- получения информации о состоянии процесса или объекта: в зависимости от способа представления информации входят: датчики; нормирующие преобразователи, формирующие унифицированный сигнал связи; приборы, обеспечивающие представление измерительной информации в форме, доступной для непосредственного восприятия наблюдателем, и устройства алфавитно-цифровой информации, вводимой оператором вручную.

- приема, преобразования и передачи информации по каналам связи: содержит коммутаторы измерительных цепей, преобразователи сигналов и кодов, шифраторы и дешифраторы, согласующие устройства, средства телесигнализации, телеизмерения и телеуправления. Эти устройства используют для преобразования как измерительных, так и управляющих сигналов.

- преобразования, хранения и обработки информации, формирования команд управления: анализаторы сигналов, функциональные и операционные преобразователи, логические устройства и устройства памяти, датчики, регуляторы, управляющие вычислительные устройства и комплексы.

- использования командной информации: исполнительные устройства (электрические, пневматические, гидравлические или комбинированные исполнительные механизмы), усилители мощности, вспомогательные устройства к ним, а также устройства представления информации.

Минимизация номенклатуры средств контроля и управления реализуется на основе двух принципов: унификации устройств одного функционального назначения на основе параметрического ряда этих изделий и агрегатирования комплекса технических средств для решения крупных функциональных задач.

Агрегатные комплексы (АК) представляют собой совокупность технических средств, организованных в виде функционально-параметрических рядов, охватывающих требуемые диапазоны измерения в различных условиях эксплуатации и обеспечивающих выполнение всех функций в пределах заданного класса задач.

Принцип агрегатирования в ГСП применяют очень широко. Унифицированная базовая конструкция датчиков теплоэнергетических величин с унифицированными пневматическим и электрическим сигналами была создана всего из 600 наименований деталей, при этом было получено 136 типов и 863 модификации этих датчиков.

Заложенные в ГСП общие для всех изделий понятия совместимости можно сформулировать следующим образом.

Информационная совместимость - совокупность стандартизированных характеристик, обеспечивающих согласованность сигналов связи по видам и номенклатуре, их информативным параметрам, уровням, пространственно-временным и логическим соотношениям и типу логики. Для всех изделий ГСП приняты унифицированные сигналы связи и единые интерфейсы, которые представляют собой совокупность программных и аппаратных средств, обеспечивающих взаимодействие устройств в системе.

Конструктивная совместимость - совокупность свойств, обеспечивающих согласованность конструктивных параметров и механическое сопряжение технических средств, а также выполнение эргономических норм и эстетических требований при совместном использовании. Её основой являются типовые конструктивы и агрегат­ные комплексы, центральное место среди которых занимают агрегатные комплексы средств электроизмерительной (АСЭТ) и вычислительной (АСВТ) техники. Они создаются методами проектной компоновки из более простых блоков, модулей и устройств, проектируемых на одной и той же печатной плате, элементы которой соединены одним внутрикаркасным интерфейсом.

Эксплуатационная совместимость - совокупность свойств, обеспечивающих работоспособность и надежность функционирования технических средств при совместном использовании в производственных условиях, а также удобство обслуживания, настройки и ремонта.

Метрологическая совместимость - совокупность выбранных метрологических характеристик и свойств средств измерений, обеспечивающих сопоставимость результатов измерений и возможность расчета погрешности результатов измерений при работе технических средств в составе систем.

По роду используемой энергии носителя информационных сигналов устройства ГСП делятся на электрические, пневматические, гидравлические, а также устройства, работающие без использования вспомогательной энергии - приборы и регуляторы прямого действия. Для того чтобы обеспечить совместную работу устройств различных групп, применяют соответствующие преобразователи сигналов. В АСУ наиболее эффективно комбинированное применение устройств различных групп.

Достоинства электрических приборов общеизвестны. Это, в первую очередь, высокая чувствительность, точность, быстродействие, удобство передачи, хранения и обработки информации. Пневматические приборы обеспечивают повышенную безопасность при применении в легко воспламеняемых и взрывоопасных средах, высокую надежность в тяжелых условиях работы и агрессивной атмосфере. Однако они уступают электронным приборам по быстродействию, возможности передачи сигнала на большое расстояние. Гидравлические приборы позволяют получать точные перемещения исполнительных механизмов и большие усилия.

В технической документации наиболее широко используется такой классификационный признак, как тип изделия - совокупность изделий одинакового функционального назначения и принципа действия, сходных по конструктивному исполнению и имеющих одинаковые главные параметры. В состав одного типа может входить несколько типоразмеров и модификаций или исполнений изделия.

Типоразмеры изделия одного типа различаются значениями главного параметра (обычно выделяются для однофункциональных изделий).

Модификация - совокупность изделий одного типа, имеющих определенные конструкционные особенности или определенное значение неглавного параметра. Под исполнением обычно понимают изделия одного типа, имеющие определенные конструктивные особенности, влияющие на их эксплуатационные характеристики, например тропическое или морское.

Комплекс - более крупная классификационная группировка, чем тип. В ГСП комплексы разделяются на унифицированные и агрегатные. Отличительной особенностью унифицированного комплекса является то, что любые сочетания его технических средств между собой не приводят к реализации этими средствами новых функций. В агрегатных комплексах различным сочетанием технических средств можно реализовать новые функции. Наиболее широко используются агрегатные комплексы средств электроизмерительной техники (АСЭТ), вычислительной техники (АСВТ), телемеханики (АСТТ), сбора первичной информации (АСПИ) и др.

Обмен информацией между техническими средствами ГСП реализуется при помощи сигналов связи и интерфейсов.

В АСУ наиболее распространены электрические сигналы связи, достоинствами которых являются высокая скорость передачи сигнала, низкая стоимость и доступность источников энергии, простота прокладки линий связи. Пневматические сигналы применяют в основном в нефтяной, химической и нефтехимической промышленности, где необходимо обеспечить взрывобезопасность и не требуется высокое быстродействие. Гидравлические сигналы в основном применяют в гидравлических следящих системах и устройствах управления гидравлическими исполнительными механизмами.

Информационные сигналы могут быть представлены в естественном или унифицированном виде. Естественным сигналом называется сигнал первичного измерительного преобразователя, вид и диапазон изменения которого определяются его физическими свойствами и диапазоном изменения измеряемой величины. Обычно это выходные сигналы измерительных преобразователей, чаще всего электрические, которые можно передать на небольшое расстояние (до нескольких метров). Вид носителя информации и диапазон изменения унифицированного сигнала не зависят от измеряемой величины и метода измерения. Обычно унифицированный сигнал получают из естественного с помощью встроенных или внешних нормирующих преобразователей.

При создании сложных систем, особенно на базе микропроцессорных устройств и вычислительных средств, обмен информацией между техническими средствами верхнего уровня осуществляется с помощью интерфейсов. Интерфейс - это совокупность программных и аппаратных средств, устанавливающих и реализующих взаимодействие устройств, входящих в систему, и предназначенных для сбора, переработки и использования информации.

Интерфейс состоит из программной и аппаратной частей. Программная (информационная) часть определяет протокол (порядок) обмена сигналами и информацией (алгоритмы и временные диаграммы). Аппаратная часть (интерфейсные карты, платы) позволяет осуществлять информационный обмен управляющими, адресными, известительными и другими сигналами между функциональными модулями.

Метрологические характеристики средств измерений

Все средства измерений, независимо от их конкретного исполнения, обладают рядом общих свойств, необходимых для выполнения ими их функционального назначения. Технические характеристики, описывающие эти свойства и оказывающие влияние на результаты и на погрешности измерений, называются метрологическими характеристиками. Комплекс нормируемых метрологических характеристик устанавливается таким образом, чтобы с их помощью можно было оценить погрешность измерений, осуществляемых в известных рабочих условиях эксплуатации посредством отдельных средств измерений или совокупности средств измерений, например автоматических измерительных систем.

Одной из основных метрологических характеристик измерительных преобразователей является статическая характеристика преобразования (иначе называемая функцией преобразования или градуировочной характеристикой). Она устанавливает зависимость информативного параметра у выходного сигнала измерительного преобразователя от информативного параметра х входного сигнала.

Статическая характеристика нормируется путем задания в форме уравнения, графика или таблицы. Понятие статической характеристики применимо и к измерительным приборам, если под независимой переменной х понимать значение измеряемой величины или информативного параметра входного сигнала, а под зависимой величиной y – показание прибора.

Если статическая характеристика преобразования линейна, т.е. , то коэффициент К называется чувствительностью измерительного прибора (преобразователя). В противном случае под чувствительностью следует понимать производную от статической характеристики.

Иными словами - Под чувствительностью понима­ют отношение изменения сигнала на выходе к вызвавшему его измене­нию входной величины. Выражается эта величина для приборов с линейной статической характеристикой в форме абсолютной чувствительности S = Xвых/Xвх, а для нелинейной - S = dXвых /dXвх или относительной чувствительности S0 = (Xвых/Xвых)/( Хвхвх).

Порогом чувствительности считается входное воздействие Хвых, называющее минимально ощутимое изменение выходного сигнала Хвых. Он выражается в единицах входной величины.

Пределы измерений. Верхним и нижним пределом измерений прибора называются соответственно наибольшее и наименьшее значение величины, которые могут быть измерены с нормированной погрешностью.

Диапазон измерений является основной характеристикой средства измерения. Область значений между верхним и нижним пределами определяет диапазон измерений, он определяет область значений измеряемой величины, для которой нормированы допускаемые погрешности. Диапазон измерений разбивается на деления, цена которых определяется как разность двух соседних отметок шкалы для аналоговых приборов, или цена единицы младшего разряда для цифровых.

Динамической характеристикой устройства называют зависимость, определяющую изменение выходной величины устройства как реакцию на известное изменение входной величины. Динамика измерительного прибора является очень важным свойст­вом. Например, известно, что нагретые заготовки перемещаются по рольгангам достаточно быстро и проходят иногда мимо пирометра за 1 - 3 с, поэтому быстродействие применяемых в этих случаях приборов должно быть не ниже чем 0,1-0,5 с.

Важной характеристикой шкальных измерительных приборов является цена деления, т.е. то изменение измеряемой величины, которому соответствует перемещение указателя на одно деление шкалы. Если чувствительность постоянна в каждой точке диапазона измерения, то шкала называется равномерной. При неравномерной шкале нормируется наименьшая цена деления шкалы измерительных приборов. У цифровых приборов шкалы в явном виде нет, и на них вместо цены деления указывается цена единицы младшего разряда числа в показании прибора.

Важнейшей метрологической характеристикой средств измерений является погрешность.