- •Введение
- •1. Взаимодействие колеса с опорной поверхностью
- •1.1. Радиусы автомобильного колеса
- •1.2. Реакции опорной поверхности
- •1.3. Момент сопротивления качению
- •1.4. Коэффициент сопротивления качению
- •Коэффициент сопротивления качению для различных дорог
- •1.5. Продольная реакция и режим качения колеса
- •Ведущий
- •Нейтральный
- •Тормозной
- •1.6. Сила и коэффициент сцепления шины с дорогой
- •Коэффициент сцепления для различных дорог
- •2. Силы, действующие на автомобиль в процессе движения
- •2.1. Сила сопротивления качению
- •2.2. Сила сопротивления подъему
- •2.3. Сопротивление воздушной среды
- •Коэффициенты обтекаемости и площади лобового сопротивления
- •2.4. Внутренние силы сопротивления
- •Механические потери двс
- •Трение в узлах
- •Привод механизмов
- •2.5. Продольные усилия ведущих колес
- •2.6. Уравнение силового баланса
- •2.7. Приведенная сила инерции
- •2.8. Уравнение мощностного баланса
- •2.9. Распределение нормальных реакций дороги на передние и задние колеса
- •3. Режим работы и характеристики двигателя
- •3.1. Режим работы двигателя
- •3.2. Управление крутящим моментом двигателя
- •3.3. Скоростные характеристики
- •3.4. Топливные характеристики
- •3.5. Эксплуатационный режим работы
- •4. Динамика прямолинейного движения
- •4.1. Динамический паспорт автомобиля
- •4.2. Разгон автомобиля
- •Р ис. 22. Характеристика ускорений
- •4.3. Особенности автомобилей с гидромеханической трансмиссией
- •4.3.2. Показатели к характеристики рабочего процесса
- •4.4. Оценочные показатели и характеристики разгонных и скоростных свойств автомобиля
- •5. Топливная экономичность
- •5.1. Измерители топливной экономичности
- •5.2. Уравнение расхода топлива
- •5.3. Оценочные показатели и характеристики топливной экономичности автотранспортных средств
- •5.4. Эксплуатационные нормы расхода топлива
- •Значение линейных норм расхода топлива
- •6. Экологическая безопасность
- •6.1. Значение экологической безопасности автомобиля
- •6.2. Вредные вещества и источники их выделения
- •6.3. Влияние режима работы двигателя на токсичность отработавших газов
- •6.4. Влияние скоростного режима работы двигателя на экологическую безопасность
- •6.5. Показатели и характеристики выброса вредных веществ
- •Относительная опасность некоторых вредных веществ
- •6.6. Уравнение выброса вредных компонентов отработавших газов
- •6.7. Экологическая характеристика токсичности установившегося движения
- •6.8. Токсичность отработавших газов при различных режимах работы двигателя автомобиля
- •7. Тормозные свойства автомобиля
- •7.1. Классификация режимов торможения
- •7.2. Уравнение торможения
- •7.3. Торможение при неполном использовании сил сцепления
- •7.4. Торможение с полным использованием сил сцепления
- •7.5. Основные фазы процесса торможения
- •7.6. Тормозной путь автомобиля
- •7.7. Распределение тормозных усилий между осями
- •8. Проходимость автомобиля
- •8.1. Проходимость автомобиля и ее значение
- •8.2. Показатели проходимости
- •Автомобили
- •8.3. Взаимодействие колеса с грунтом
- •8.4. Преодолевание пороговых препятствий
- •8.5. Пути повышения проходимости
- •9. Плавность хода
- •9.1. Плавность хода и ее значение
- •9.2. Измерители плавности хода
- •9.3. Колебания автомобиля
- •9.4. Способы повышения плавности хода автомобиля
- •10. Динамика криволинейного движения
- •10.1. Значение и особенности криволинейного движения
- •10.2. Силы и моменты, обеспечивающие поворот
- •10.3. Боковой увод колеса
- •10.4. Кинематические параметры криволинейного движения
- •10.5. Силы инерции при криволинейном движении
- •10.6. Боковые реакции на колесах в процессе поворота
- •10.7. Крен кузова при криволинейном движении
- •11. Управляемость и маневренность
- •11.1. Поворачиваемость автомобиля
- •11.2. Критическая скорость по условиям управляемости
- •11.3. Колебания управляемых колес вследствие их дисбаланса
- •11.4. Автоколебания управляемых колес
- •11.5. Колебания управляемых колес вследствие кинематического несоответствия подвески и рулевого управления
- •11.6. Стабилизация управляемых колес
- •11.7. Углы установки колес
- •11.8. Маневренность автотранспортных средств
- •Р ис.79. Угол горизонтальной гибкости
- •12. Устойчивость автомобиля
- •12.1. Основные виды устойчивости автомобиля
- •12.2. Критическая скорость по боковому скольжению
- •12.3. Критическая скорость движения по опрокидыванию
- •13. Контрольные вопросы
- •13.1. Взаимодействие колеса с опорной поверхностью
- •13.2. Силы, действующие на автомобиль в процессе движения
- •13.3. Режим работы и характеристики двигателя
- •13.4. Динамика прямолинейного движения
- •Топливная экономичность
- •13.6. Экологическая безопасность
- •13.7. Тормозные свойства автомобиля
- •9. Что понимается под временем срабатывания тормозного привода?
- •13.8. Проходимость автомобиля
- •13.9. Плавность хода
- •13.10. Динамика криволинейного движения
- •13.11. Управляемость и маневренность автомобиля
- •13.12. Устойчивость автомобиля
Коэффициенты обтекаемости и площади лобового сопротивления
-
Автомобили
к, Нс2/м4
F,
м2
1.Легковые автомобили:
1.
ЗАЗ-968
0,30
1.7
3.
ВАЗ-2101, 2103. 2106
0.33
1.8
4.
ВАЗ-2105
0.34
1.8
5
ВАЗ-2108
0.25
1.9
6.
ВАЗ-2121
0.24
2,2
7.
"Москвич"-412
0.32
1.8
9.
ГАЗ-3102
0,23
2.3
10.
УАЗ-469
0,38
3.4
2. Автобусы:
3.
ПАЗ-672
0,30
5,3
4.
ПАЗ-3202
0,39
5,3
5,
ЛАЗ-695Н
0,38
6,3
6.
ЛАЗ-695Е
0,25
6,3
7.
ЛАЗ-699
0,37
6,3
3. Грузовые автомобили:
1.
Иж-2715
0,32
2,1
2.
ГАЗ-3305
0,81
4,1
4.
ЗИЛ-130
0,54
5,1
8.
МАЗ-500А
0,64
6,0
10.
МАЗ-5336
0,67
8,4
13.
КамАЗ-5320
0,68
6,9
14.
КамАЗ-5511
1,04
6,0
17.
УрАЛ-375Д
0,71
6,2
18.
КрАЗ-256
0,59
6,4
19.
КрАЗ-255Б
0,70
7,1
20.
КрАЗ-6505
0,98
6,7
крыша, боковые стекла, боковые стенки, багажник. Сопротивление формы составляет 50-60 лобовой аэродинамической силы.
Сопротивление выступающих частей (15 – 17 Pwx) создаваемое различными выступающими частями: фарами, указателями поворота, подфарники, зеркала заднего вида, ручками и т.д.
Сопротивление поверхностного трения (5 - 10 Pwx) вызываемое силами вязкости пограничного слоя воздуха, движущегося у поверхности автомобиля, и зависящее от размера и шероховатости этой поверхности.
Сопротивление внутренних потоков (8 - 10 Pwx), создаваемое потоками воздуха, проходящими внутри автомобиля для вентиляции или обогрева кузова, а также охлаждения двигателя.
Индуктируемое сопротивление (5 - 10 Pwx) вызываемое взаимодеиствием сил, действующих в направлении продольной оси автомобиля (подъемной) и перпендикулярно этой оси (боковой).
2.3.3. Подъемная аэродинамическая сила
Образование подъемной аэродинамической силы Pwz обусловлено перепадом давлений воздуха на автомобиль снизу и сверху. Преобладание давления воздуха снизу над давлением сверху объясняется тем, что скорость движения воздушного потока, омывающего автомобиль снизу, гораздо меньше скорости потока, омывающего его сверху. Значение подъемной аэродинамической силы Pwz относительно мало и не превышает 1,5% от веса самого автомобиля. Например, спортивным автомобилям, движущимся с большими скоростями, придают такую форму. Чтобы сила Pwz была направлена не вверх, а вниз, т. е. прижимала его к дороге.
2.3.4. Боковая аэродинамическая сила
Боковая аэродинамическая сила возникает при обтекании автомобиля воздушным потоком под некоторым углом к его продольной оси. Наличие указанного угла в подавляющем большинстве случаев объясняется наличием бокового ветра, дующего под углом а к продольной оси автомобиля (рис. 8).
Рис. 8. Обтекание автомобиля воздухом при боковом ветре
λ - угол натекания; α – угол атаки ветра.
Если боковой ветер дует со скоростью Vв под углом α к продольной оси автомобиля, то результирующая скорость движения воздушного потока Vw будет равна:
Vw = . (35)
Из данной формулы следует, что при угле атаки α = 0 (встречный ветер) скорость воздушного потока равна сумме скоростей автомобиля и ветра (Vw = Va + VВ), а при угле 180° (попутный ветер) разнице указанных скоростей (Vw = Va - VВ).
Изменение скорости и направления бокового ветра приводит не только к изменению скорости воздушного потока, но и к изменению угла натекания воздушного потока (λ), тангенс которого можно определить по формуле:
tg λ = VB sin α/(Va+VBcosα). (36)
Как показывают испытания, действие бокового ветра особенно ощутимо для автотранспортных средств большой длины и высоты, т.е. автобусов и автопоездов.