Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Course projeсt(Theory of Electric Drive).doc
Скачиваний:
1
Добавлен:
21.11.2019
Размер:
854.53 Кб
Скачать

3 Methodical guides

3.1 Calculation of ED with load-lifting mechanism. All computations are to be presented accordingly to international system of units. Sequence of calculations is following.

3.1.1. The value of static power (17-19) accordingly to rated load of a motor is defined by the next formula

(3.1)

Рs – static power of a drive, kWt;

V – the speed of load lifting (appendix 1), m/s;

g - free-falling velocity, which is equal to 9.8 m/ s2;

η – efficiency of load-lifting mechanism.

Efficiency of load-lifting mechanism includes reducer efficiency and drum efficiency. It is approximately equal to 0.85-0.9

3.1.2 By initial data (appendix 1) by calculated power Ps from appendix B the driving EM is choosing.

3.1.3 Determination of load static moment Ms, N·m:

(3.2)

where ωr – is a rated speed of chosen motor, rad/s;

Ps – is a static power of the motor according to a rated load, kWt;

(3.3)

where n – is a frequency of rotation of chosen motor, rot/min.

3.1.4 For given values of linear lifting speed V, acceleration a and lifting height H we can calculate the operation time and passed path in the separate areas: run, constant movement and ED braking.

6

(3.4)

(3.5)

where t1, t2 , h1, h2 – are the time [s] and path [M] of run and braking respectively;

а – admissible acceleration (deceleration), m/s; (for simplification let us take admissible acceleration of ED run numerically equals to admissible deceleration at ED braking);

hу, tу- the path and the time of constant movement respectively.

(3.6)

where Tc – is a cycle time;

tо – break time between regular liftings, [s].

  1. To construct the speed diagram V (t) by a data of 3.1.4.

  1. Determination of switching on real duration ПВд of ED.

(3.7)

3.1.7 Determination of induced moment of inertia Iind (kg/ m2)

(3.8)

where Іm – inertia moment of ED movable parts, kg/ m2;

Ir – inertia moment of reducer, kg/ m2; Iδ – inertia moment of a drum, kg/ m2;

іР - transmission ratio of reducer.

7

F or AC motor (appendix 2)

(3.9)

where GD2 – flywheel moment, kg/ m2.

At absence of data about reducer and drum it should be taken

(3.10)

3.1.8 Dynamic moments Mdyn r and Mdyn br at run and braking

respectively

(3.11)

(3.12)

3.1.9 Average starting moment (M1=Mav start) and average stopping moment (Mav stop) can be defined by the formulas

(3.13)

(3.14)

3.1.10 Load diagram is constructed by 3.1.3 – 3.1.9 data. Example of a diagram is shown on a figure 3.1

3.1.11 The value of motor equivalent moment Me is determined by the next formulas:

(3.15)

8

F igure 3.1 – Load diagram

(3.16)

where Мі, t1 – are the moment (N m) and duration (s) of load diagram area;

β – is a factor, allowing the frequency of ED switching on

Nsw.

(3.17)

9

At Nsw < 100 factor ; at Nsw > 100 factor β is decreased from 0.8 to 0.6 (Nsw > 500).

In the next calculations we will use the biggest value of Me.

3.1.12 Determination of operating equivalent moment

(3.18)

where ПВд is calculated in 3.1.6; ПВпасп – in the appendix Б.

3.1.13 By obtained values of operating equivalent moment we can determine equivalent power of the motor (kWt).

(3.19)

3.1.14 Checking of chosen motor (3.1.2) by the heating. If Рrat ≥ Реq then the motor by the heating is chosen correct. If Рeq ≥ Рrat, then it is needed to choose another one with the nearest more high power and speed and after those repeat the calculations by 3.1.7.-3.1.14.

3.1.15 Checking of chosen motor by overloading ability is realized by comparison of maximal allowable moment of the motor Мmах (appendix Б) with the maximum moment М1 of load diagram. The next proportion should be performed:

(3.20)

At the observance of this proportion the motor provide the given acceleration at run area; and if such a proportion is not executed, it is required to choose another motor with the high power high Мmах.

3.1.16 Calculation of natural mechanical characteristic of asynchronous motor with phase-wound rotor. It is needed to define the rated moment of the motor, using ratings (appendix Б).

10

(3.21)

where Рrat – is the rated power of the motor (kWt).

(3.22)

where ω – is a rated angular speed (rad/s).

Overload ability of the motor λ:

(3.23)

where - is the maximum torque of the motor (Hm)

Rated sliding

(3.24)

where ω0 – synchronous angular speed (rad/s), that equals

(3.25)

where р - is a number of poles pairs

Poles number corresponds to lust digit in reference designation of asynchronous motor type. For example, motor МТН 612-10 has 10 poles, i. e. p=5, motor МТН 112-6 has 6 poles, i. e. that the number of pole pairs equals to 3.

11

Critical sliding

(3.26)

Calculation of natural mechanical characteristic of asynchronous motor should be performed by simplified formula of mechanical characteristic (Kloss`s formula)

(3.27)

where М, S - are current values of moment and sliding.

The given value of sliding S determines the current moment value, formula (3.26) and current speed value by formula (3.27)

(3.28)

Data of M, ω calculations should be written into the table. The natural mechanical characteristic is constructed with the help of calculation data.

Calculation of electromechanical characteristic should be performed in relative units beside with stated below calculations of mechanical characteristic. Synchronous speed ω0 and rated moment Мn should be considered as the base growth

(3.29)

(3.30)

(3.31)

12

For determination of current values of speed ω and moment M it is should to use the formulas 3.27; 3.28 for sliding (-)1; (-)0,7; (-)Scr;

(-)Scr/2; 0; Sr; Scr; 1; 1,5; 2.

Calculations should be written into the table 3.1. It should to construct electrical characteristic in relative units with the help of calculation data.

Table 3.1 – Data of electromechanical characteristic calculation

S

ω

ω *

М*

I*

(-)1

(-) 0,7

.

1,5

2

3.1.17 Calculation of natural mechanical characteristic of DC motor.

For DC independent excitation motor (ДПС НЗ) the natural mechanical characteristic is constructed by 2 points.

Point of ideal idle rate (with coordinates ω = ωо; М = 0) and a point of rated mode (with coordinates ω = ωн; М = Мr)

Using ratings (appendix Б) it should to determine:

Rated motor resistance

(3.32)

Efficiency at rated load Рr (kWt) and resistance of armature circuit

(3.33)

13

(3.34)

Speed of ideal idle rate

(3.35)

Rated moment of a motor

(3.36)

Natural mechanical characteristic is constructed by obtained coordinates of ideal idle rate point and a point of rated mode.

By the point of ideal idle rate (with coordinates ω=ω0; M=0)

and point of short-circuit (with coordinates ω =0; M=Мsc).

(3.37)

where Іsc – short-circuit current [А]

(3.38)

Mechanical characteristic constructed by modes of idle rate and short-circuit should to coincide with characteristic constructed by idle rate and rated modes.

It is required to calculate and construct the natural mechanical (electromechanical) characteristic in relative units. Speed of ideal idle rate ω0 and rated moment should be considered as the base values.

(3.39)

(3.40)

14

(3.41)

Mechanical characteristic should be calculated in relative units and constructed by data of idle rate and rated mode.

3.1.18 Calculations and constructions of artificial characteristics for rheostat mode of motor speed changing. To calculate and construct artificial characteristic with condition М = Мr, motor speed ω =0,5·ωr . It is needed to determine the additional Rad.

(3.42)

where Sar – is an artificial sliding for ω =0,5·ωr .

R2 – is an active resistance of rotor phase.

(3.43)

where Е2r, І2r – rotor voltage and current (appendix Б)

(3.44)

For ДПС НЗ

To calculate and construct the artificial characteristics for для ω = 0,8; 0,7; 0,5; 0,3 ωr

To determine the additional resistance Rд

For example, for ω = 0.5·ωr

(3.45)

where Rar – is determined by the formula (3.34)

15

3.1.19 Calculation of rheostat characteristics of asynchronous motor for previously chosen 2-3 values of Rad.

Calculation should be performed with condition that М = Мr. To determine the value of additional resistance Rad by graphical method for placement of regulative characteristics approximately in a zone вc

(fig. 3.2).

1 – natural-mechanical characteristic;

2,3,4 – regulative mechanical characteristics Figure3.2 – Mechanical characteristic set.

16

Example: determination of Rad for artificial characteristic 2 (see fig. 3.2)

(3.47)

(3.48)

To calculate and construct the artificial characteristics for additional resistances Rad

(3.49)

where Sad – sliding value from natural mechanical characteristic.

To perform the calculation for the next values

Sad ; Sr ; Sкcr ; S = 1 ; S = 0,2 .

Further calculation is by the formulas 3.16; 3.17.

3.1.20 Calculation and construction of starting diagram of electric drive. Approximate view of starting and braking ED diagrams (for 3 stages of ED) presented on a fig. 3.4.

1 7

Figure 3.3 – Starting diagram of electric drive

Ms 1,2,3 – are static moments

18

Four possible operating modes are shown on the figure 3.3: lifting and lowering of loaded waggon, lifting and lowering of empty waggon; braking modes: dynamic brake (ДПС НЗ), counter switching braking mode (ДПС НЗ and asynchronous motor); required geometrical constructions are realized for determination of additional resistances by a graphical method.

In the course project starting diagram (lifting of a loaded waggon) and braking modes are calculated.

Factor J is determined beforehand at the construction of starting diagram by analytic method.

For asynchronous motor

(3.40)

where m – is a set number of starting stages;

Rr = R2;

Rr – is active component of rotor resistance, Оhm (see the formula 3.32);

R2 – is a resistance of rotor phase winding of asynchronous motor [Ohm]

R2 = 0.12 Оhm (it's advisable)

(3.41)

where R1r – is a full resistance of rotor phase;

U2r – is a rotor voltage, V (appendix Б);

Іst – is a starting current of the motor, A.

(3.42)

where Кп = 2.5 (it's advisable)

І2r – is a rated current of a rotor, A (appendix Б)

For DC motor

(3.43)

19

where R1 - is a full resistance of armature circuit, Ohm;

(3.44)

where Іst – is a starting current:

(3.45)

where λ – is an overloaded ability by a current (moment),

λ = (2 ÷ 2.3);

Іr – is a rated current of the motor, A (appendix Б); Ra – is a resistance of armature circuit, Ohm (see the formula 3.25).

After determination of a factor J we can find the switching moment M2 for a motor

(3.46)

where М1 = λ·Мr – is a starting moment, N m.

In asynchronous motors the developed moment is proportional to the square of the mains supply voltage, so even insignificant decrease of voltage at starting considerably decreases the starting moment. So, chosen moment at start should be in (25-30) % less than maximal moment, developed by the motor at rated voltage, i.e.

(3.47)

Value М1for DC motor is determined by taken switching stage and overload capacity and shouldn`t exceed 2.7.

For reliable motor start at rated load it should to choose the moment that is created at switching of starting rheostat speed, by 10-20 % higher than total (rated) static resistance moment.

(3.48)

20

But some cases can take place in given course work, when accordingly to output data, chosen motor power will exceed static motor power, correspondently to set value of final load (from the overload capability testing). In this case to obtain set quantity of switching steps of starting rheostat it is necessary to define graphically the value of switching moment М2.

Resistance of starting rheostat (see fig. 3.3) for DCM:

for asynchronous motor:

Resistance of starting rheostat sections:

Total resistance of starting rheostat for DCM:

for asynchronous motor:

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

In case of graphic calculation, R1 is found previously (formulas 3.41 and 3.44); the scale of resistance is defined previously (see fig. 3.1.20).

21

[Ohm/cm] (3.54)

Then resistance of sections and the total resistance of starting rheostat are calculated:

(3.55)

3.1.21 Calculation and plotting of braking characteristics.

Plotting of regenerative braking characteristic is realized by two points (see fig. 3.3). (ωs; Мт), (ω0; М = 0) . Let us consider that ratio of maximal moment at regenerative braking is equal to ratio of maximal moment at starting (see formulas 3.40; 3.43) i.e. МТ = Мs3 .

Step regenerative resistance is defined by graph on fig. 3.3.

(3.56)

(3.57)

Section regenerative resistance Rregs

Plotting of dynamic braking characteristic for DCM is realized by two points (ω = 0; М = 0), (ωd = 0,3*ωrat ; Мd = 0,8*Мrat). Coordinates of a second point are set randomly.

Dynamic braking resistance Rd

(3.58)

where gk – is found from fig. 3.3 previously, for this half line ОК is drawn in parallel to natural characteristic.

To describe processes acting at lowering of loaded (empty) wagon, i.e. shifting of point, that characterizes regime, by virtue of fig. 3.3.

22

3.1.22 Calculation of transient processes at motor starting.

Calculation includes the residence time defining on each step and view of current (moment) changing exponential curve at transition from step to step. To execute the calculation for loaded wagon. To combine current (moment) changing graphs at starting with speed diagram.

For DCM run time of motor tх on considered step:

(3.59)

or

(3.60)

(3.61)

where Тmx – el. mechanical time constant for the same step

Іs ( М s) – rated current (moment) of load, А

Іred – reduced inertia moment (kg/m2) (see formula 3.8)

Мshcх – short circuit moment (N·m) of considered step "х"

(3.62)

(3.63)

(3.64)

where RΣX – resulting resistance of armature circuit "х".

23

It can be seen from formulas (3.40 - 3.41) that with decreasing of armature circuit resistance, residence time of motor on considered step decreases. At transition of motor to natural characteristic time of achieving the constant speed value is accepted to be equal (3.4) to time constant value Тm on considered step.

The character of exponential dependence of current (moment) changing is defined by

(3.65)

For AC motor time tх of motor run on step "х"

(3.66)

where Тmх - el. mechanical time constant of the same step.

where Іred – reduced inertia moment (kg/m2), (see formula

3.1.7.1);

∆ωх – speed increment on each step of lowering.

∆ωх – is defined from fig. 3.3. So:

  • for the first step of starting ∆ωх = ∆ω1 = ω1;

  • for second ∆ωх = ∆ω2 = ω21 ;

  • for third ∆ωх = ω3 –ω2;

  • for natural ∆ωх = ω4 –ω3.

Run time from ω4 to ωs to accept equal (34)Tmx, defined for natural characteristic.

Exponential curve character is defined by value

(3.68)

24

3.1.23 Designing of principal scheme for starting control and for motor braking.

Principal scheme have to allow executing of gradual motor starting, reversing, braking regimes, residence on regulation characteristic; el. magnet brakes control must be involved in scheme.

Task details for principal scheme designing are considered by teacher with each student independently.

Explanatory note have to contain description of scheme operation.

25

LIST OR REFERENCES

  1. СТП 2070848.12-90. Пояснительная записка к курсовым й дипломним проэктам (работам). Требования и правила оформления - Запорожье: ЗМИ. Введен 01.04.2001 г.

  1. ГОСТ 7.32-81. Отчет о научно-исследовательской работе. Общие требования и правила оформления.- М.: издательство стандартов, 2001.-14с . ГОСТ 2702-75. ЕСКД Правила выполнения электрических схем.

  1. ГОСТ 2.721-74. ЕСКД. Обозначения условные графические в схемах. Обозначение общего применения.

  1. ЕСКД. Справочное пособие /С.С.Борущев, А.Д.Волков, М.М. Ефимова и др. - М. : изд-во стандартов, 1989.-352с.

  1. Чиликин М.Г., Сандлер А.С. Общиц курс зл. привода. - М. : Энергоатомиздат, 1986.- 416с.

  1. Москаленко В.В. Электрический привод. - М : Высшая школа, 2002.-430с.

  1. Метельський В.В. Електричні машини та мікро машини /Кравченко А.М. – Запоріжжя, ЗНТУ 2001. – 592с.

26

Appendix А

Table А.1 – Initial data for calculations

№ of variant

Final load,

Q

Elevetion speed

Admissable acceleration (m/s2)

Sloping angle

Oriented frequency of shaft revolution

Kind of current

Height of elevation, Н(m)

Pause between step elevations

Supply voltage

Quantity of starting currents

1

1000

0,3

0,5

30

1000

=

16

20

220

4

2

2000

0,03

0,2

45

930

~

15

25

380

3

3

3000

0,08

0,7

45

705

~

14

60

380

3

4

4000

0,07

0,24

30

895

~

13

30

380

3

5

5000

0,07

0,5

45

540

=

12

30

220

4

6

8000

0,05

0,4

20

540

=

11

40

220

4

7

10000

0,3

0,8

45

490

~

15

25

380

3

8

12000

0,3

0,7

60

960

~

16

20

380

3

9

16000

0,06

0,2

30

700

~

14

30

380

3

10

20000

0,06

0,2

45

960

~

13

45

380

3

11

25000

0,08

0,2

30

930

~

12

60

380

3

12

30000

0,05

0,3

25

586

=

11

30

220

4

13

35000

0Т25

0,6

60

600

=

15

20

220

4

14

50000

0,06

0,1

50

570

~

16

45

380

3

15

75000

0,1

0,4

30

584

=

14

50

440

4

16

80000

0,1

0,3

45

500

=

13

20

440

4

17

90000

0,05

0,1

60

510

=

12

25

440

4

18

100000

0,07

0,2

30

960

~

11

30

380

3

19

120000

0,05

0,1

45

600

~

16

45

380

3

20

125000

0,03

0,3

60

550

-

15

30

440

4

21

130000

0,02

0,1

60

575

-

15

60

380

3

22

140000

0,03

0,2

45

565

~

18

60

380

3

23

150000

0,07

0,3

30

470

=

14

45

220

4

24

200000

0,05

0,3

30

440

=

14

50

220

3

25

27000

0,04

0,2

35

695

=

14

60

220

4

26

30000

0,03

0,1

45

945

~

16

45

380

3

27

31000

0,08

0,2

30

720

~

14

30

380

3

28

32000

0,17

0,05

45

565

=

15

45

440

4

29

40000

0,08

0,07

45

980

=

12

60

440

4

30

33000

0,03

0,1

30

960

~

14

30

380

3

31

35000

0,07

0,12

45

980

=

11

45

220

4

27

Continuation of table А

32

3700

0,17

0,05

45

565

=

15

45

440

4

33

3900

0,08

0,07

45

980

=

12

60

440

4

34

4000

0,03

0,1

30

960

~

14

30

380

3

35

4100

0,07

0,12

45

980

=

11

45

220

4

36

41000

0,17

0,05

45

565

=

15

45

440

4

37

42000

0,08

0,07

45

980

=

12

60

440

4

38

42500

0,03

0,1

30

960

~

14

30

380

3

39

43000

0,07

0,12

45

980

=

11

45

220

4

40

45000

0,1

0,1

45

540

=

14

60

220

3

41

50000

0,08

0,1

30

800

=

12

60

220

4

42

10000

0,5

0,14

45

520

=

14

35

220

4

43

25000

0,09

0,3

30

940

~

12

60

380

3

44

4000

0,35

0,5

40

965

~

14

45

380

3

45

5000

0,55

0,55

45

580

=

12

60

220

4

46

70000

0,12

0,3

30

490

=

14

45

220

4

47

8000

0,5

0,4

40

520

=

12

60

440

4

48

80000

0,13

0,4

35

450

=

14

50

220

3

49

1000

0,2

0,3

45

950

~

12

60

380

3

50

15000

0,08

0,28

40

955

~

12

45

380

3

51

17000

0,08

0,3

45

710

~

14

60

380

3

52

19000

0,06

0,25

30

950

~

12

45

380

3

53

2500

0,45

0,25

40

970

~

13

60

380

3

54

32000

0,33

0,29

45

480

=

14

45

220

4

55

1250

0,33

0,38

40

1070

=

12

60

220

4

57

1400

0,5

0,25

40

770

=

11

60

220

4

58

12000

0,3

0,65

60

1000

=

14

30

220

4

59

50000

0,06

0,1

25

600

=

16

45

440

4

60

35000

0,25

0,5

60

600

~

14

60

380

3

61

30000

0,05

0,2

25

570

~

12

45

380

3

62

1000

0,3

0,6

30

950

~

18

40

380

3

63

2000

0.03

0,4

45

980

=

15

25

220

4

28

Appendix B

DC motors of independent (parallel) excitation of enclosed design with natural cooling in short-time mode (60 min.) and protected with independent ventilation in continuous mode (ПВ=100%)

Table B.1 – Technical data of electric motors.

Rotation frequency,

rev/min

Maximal rotation moment, Mm (N m)

Motor type

Maximal admissable rotetion frequency, rev/min

Inertia moment of armature, Imot kg/m2

Design at supply voltage

Power Prat, kWt

,

With stabilizing winding

Without stabilizing winding

With stabilizing winding

Without stabilizing winding

н

Current Irat, A

Д12

2,5

14,6

1140

1180

3600

0,05

63

54

Д21

4,5

26

1000

2030

3600

0,12

128

113

Д22

6

33

1070

1100

3600

0,15

161

137

.Д31

8

44

820

840

3600

0,30

280

245

Low

Д32

12

65

740

770

3300

0,42

456

402

Д41

16

86

670

690

3000

0,80

686

598

speed

Д806

22

116

635

650

3600

1,00

981

872

220V

Д806

37

192

565

575

2300

2,00

1860

1655

Д810

55

280

540

550

2200

3,6

2880

2550

Д812

75

380

500

515

1900

7,0

4260

3720

Д814

110

550

490

500

1700

10,25

5420

5680

Д816

150

740

470

480

1600

16,25

9120

8040

Д818

185

920

440

450

1500

22,5

12050

10600

Д21

5

31,0

1400

1400

3600

0,12

113

98

High

Д22

8

43,5

1450

1510

3600

0,15

157

137

speed

Д31

12

64

1310

1360

3600

0,30

255

225

Д32

18

94

1140

1190

3300

0,42

451

382

220V

Д41

24

124

1060

1100

3600

0,8

648

559

Д806

32

165

980

1000

2600

1,0

930

823

Д808

47

240

770

800

2300

2,0

1715

1510

29

Continuation of table B.1

Д21

4.0

12

1200

1220

3600

0,12

76

68

Д31

6,7

19

850

875

3600

0,30

175

157

Low

Д41

15

40

695

710

3000

0,80

490

436

speed

Д808

37

96

565

575

2300

2,00

1470

1320

Д810

55

140

550

560

2200

3,60

2250

2010

440V

Д812

70

176

510

520

1900

7,00

3130

2750

Д814

110

274

490

500

1700

10,25

5150

4510

Д816

150

370

480

490

1600

16,25

7150

6320

Д818

115

460

440

450

1500

22,50

9600

8480

Д22

7

19.5

1420

1460

3600

0,15

113

98

High

speed

Д32

17

45

1150

1190

3300

0,42

330

294

440V

Д806

32

82

980

1000

2600

1,00

745

657

30

Appendix C

Phase rotor asynchronous motors at supply voltage 380 V and frequency 50 Hz (ПВ=40%).

Table C.1 – Parameters of phase rotor AMs

Motor type

Power Prat, kWt

Stator current Irat, A

Rotor current Irat, A

Rotor voltage Erat, V

Maximal rot moment Nm

Motor mass, kgm

Rot frequency

Power factor

Swing moment kg m2

Efficiency %

МТТ 011-6

1,4

885

5,3

0,65

9,1

116

39

0,085

51

61,5

МТТ 012-6

2,2

890

7,6

0,68

11,5

144

56

0,115

58

64,5

МТТ 111-6

3,5

895

10,4

0,73

15

176

85

0,195

76

70

МТТ 111-6

3,0

895

10,5

0,67

13,2

176

83

0,19

76

65

МТТ 112-6

5,0

930

4,4

0,7

15,7

216

137

0,27

88

75

МТН 112-6

4,5

910

13,9

0,71

15,6

203

118

0,27

88

69

МТТ 211-6

7,5

930

21

0,7

19,8

256

191

0,46

120

77

МТН 211-6

7,0

920

22,5

0,64

19,5

236

196

0,46

120

73

МТТ 31 1-8

7,5

695

22,8

0,68

21

245

265

1,1

170

73

МТН 311-8

7,5

690

23

0,68

21

245

265

1,1

170

71,5

МТТ 311-6

11

945

30,5

0,69

42

172

314

0,9

170

79

МТН 311-6

11

940

31,5

0,69

42

172

314

0,9

170

78

МТТ 312-8

11

705

30,5

0,71

43

165

422

1,25

210

77

МТН 312-8

11

700

31

0,69

43

165

422

1,25

210

78

МТТ 312-6

15

955

38

0,73

60

235

638

1,25

210

83,5

МТН 312-6

15

950

38,5

0,73

46

219

471

1,25

210

81

МТТ 41 1-8

15

710

42

0,67

48

206

569

2,15

280

81

МТН 411-8

15

705

43

0,67

48

206

569

2,15

280

79

МТТ 411-6

22

965

55

0,73

60

235

638

2,0

280

83,5

МТН 411-6

22

960

55

0.73

60

235

638

2,0

280

82,5

МТТ 412-8

22

720

65

0,63

57

248

883

3,0

345

82

МТН 412-8

22

715

66

0,63

57

248

883

3,0

345

80,5

МТТ 412-6

30

970

75

0,71

73

255

932

2,7

345

85,5

МТН 4 12-6

30

965

76

0,71

73

255

932

2,7

345

84,5

МТН 5 11-8

28

705

71

0,72

54

281

1000

4,3

470

83

МТН 512-8

38

705

89

0,74

77

305

1370

5,7

570

85

МТН 512-6

55

960

120

0,79

10

340

1630

4,1

520

88

МТН 611-10

45

570

112

0,72

154

185

2320

17

900

84

МТН 611-6

75

950

154

0,85

180

270

2610

13,1

810

87

МТН 612-10

60

565

147

0,78

154

248

2140

21

1070

85

МТН 6 12-6

95

960

193

0,85

176

366

3580

16,5

930

88

МТН 613-10

75

575

180

0,72

145

320

4120

25

1240

88

МТН 613-6

118

960

237

0,84

160

473

4660

20,4

1100

90

МТН 711-10

100

584

246

0,69

233

272

4560

41

1550

89,5

МТН 712-10

125

585

300

0,7

237

327

5690

51

1700

90,3

МТН 713-10

160

586

392

0,68

244

408

7810

60

1900

91

Підписано до друку 1.12.2003 Формат 60х84 1/16, 2.0 др. арк. Тираж 50 прим. Зам. № 1818 69063 м. Запоріжжя, ЗНТУ, друкарня, вул. Жуковського, 64

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]