Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции I семестр.docx
Скачиваний:
22
Добавлен:
21.11.2019
Размер:
841.95 Кб
Скачать

Лекция 11. Понятие о кручении стержней некруглого поперечного сечения. Решение статически неопределимых задач. Расчёты стержней при кручении по предельному состоянию

В отличие от рассмотренных ранее круглых стержней, кручение стержней некруглой поперечной формы обладает особенностями. Основная из них – депланация. Это явление того, что сечения перестают быть плоскими, депланируют. Формулы, основанные на гипотезе плоских сечений, теряют силу. Возникают нормальные напряжения.

Различают свободное и стеснённое кручение. Свободным называют такое кручение, при котором депланация постоянна по длине стержня и её можно характеризовать величиной перемещения в осевом направлении. Кручение стержня, при котором депланация сечения по длине стержня изменяется, называется стеснённым кручением. В этом случае возникает особый вид внутреннего усилия – бимомент, влияющий на распределение нормальных и касательных напряжений по сечению.

С тержни с некруглым поперечным сечением могут быть различны (рис. 11.1).

а) б)

Рис. 11.1. Стержни с некруглым поперечным сечением: а) толстостенные; б) тонкостенные замкнутого и открытого профиля

Толстостенными называют стержни, имеющие размеры различных элементов сечения соизмеримые с размерами самого сечения. Деформация толстостенных стержней имеет сложный характер, задачи о кручении таких стержней решаются аналитически или численно методами теории упругости.

Тонкостенными называют стержни, у которых длина контура поперечного сечения намного больше толщины сечения.

Расчёт тонкостенных стержней открытого и замкнутого профиля на стеснённое кручение изучается в теории тонкостенных стержней, разработанной проф. В.З. Власовым.

Решение задачи свободного кручения стержней некруглого поперечного сечения получено Сен-Венаном.

При кручении прямоугольного поперечного сечения наибольшее напряжение возникает посредине длинной стороны контура (рис. 11.2). Для его вычисления используют формулу (11.1).

Здесь Wthb2 - момент сопротивления при кручении, α – коэффициент Сен-Венана, h и b размеры прямоугольного сечения (рис. 11.2).

Угол закручивания грузового участка длиной l c постоянным внутренним усилием находится по формуле (11.2)

Здесь Ithb3 - момент инерции при кручении, β – коэффициент Сен-Венана.

Эп. τ[МПа]

Рис. 11.2. Эпюра касательных напряжений

Коэффициенты Сен-Венана α, β, γ определяются с помощью таблицы 11.1 в зависимости от отношения h/b.

Таблица 11.1

h/b

1

2

3

4

6

8

10

α

0,208

0,246

0,267

0,282

0,299

0,307

0,313

0,333

β

0,140

0,229

0,263

0,281

0,299

0,307

0,312

0,333

γ

1,000

0,795

0,753

0,745

0,743

0,742

0,742

0,742

Расчёт различных некруглых поперечных сечений на прочность и жёсткость выполняется аналогично изложенному в предыдущей лекции. С помощью условий прочности и жёсткости решаются задачи с целью подбора размеров поперечного сечения, определения допустимой нагрузки и проверки выполнения условий. В зависимости от профиля поперечного сечения по разному определяются геометрические характеристики поперечного сечения, фигурирующие в формулах для вычисления напряжений и перемещений. (Посмотреть эти формулы самостоятельно по учебнику).

Решение статически неопределимых задач при кручении. Задачи кручения стержней являются статически неопределимыми, если крутящие моменты, возникающие в поперечных сечениях стержня, не могут быть определены с помощью только одних уравнений равновесия. Для решения таких задач необходимо рассматривать деформированное состояние скручиваемого стержня. Алгоритм решения аналогичен изложенному в теме осевое растяжение–сжатие.

В случае постоянной жёсткости стержня удобно применять для решения статически неопределимых задач метод начальных параметров (ознакомиться с этим методом самостоятельно).

Задачи могут быть несколько раз статически неопределимыми. Рассмотрим один раз статически неопределимые задачи.

а ) б)

Рис. 11.3. Статически неопределимые стержни при кручении

а) Раскрытие статической неопределимости

1. Рассмотрим статическую сторону задачи

Составим уравнение равновесия:

∑mX = 0; МА - М + МВ = 0 (1), найдем степень статической неопределимости как разницу между неизвестными опорными реакциями и количеством уравнений статики nst = 2 – 1 = 1 – задача один раз статически неопределимая и для раскрытия статической неопределимости требуется еще одно уравнение.

2. Рассмотрим геометрическую сторону задачи

Перемещение (угол закручивания) точки В (жесткая заделка) невозможно, тогда это перемещение можно представить как сумму углов закручивания грузовых участков φВ = φI + φII = 0 (2).

3. Рассмотрим физическую сторону задачи

Угол закручивания на грузовом участке длиной , где Мt=const можно представить в виде: (3). Подставим (3) в (2): . (4)

Запишем уравнения крутящих моментов на грузовых участках, рассматривая при этом равновесие правой части, содержащей опорную реакцию МВ: Мt,I = МВ - const, Мt,II = МВ - М – const. При равенстве жесткостей на грузовых участках уравнение (4) примет вид:

Решим полученное уравнение относительно одного неизвестного МВ. Далее задача решается как статически определимая.

б) Раскрытие статической неопределимости

1. Рассмотрим статическую сторону задачи

Составим уравнение равновесия:

∑mX = 0; МА + mlМВ = 0 (1), найдем степень статической неопределимости как разницу между неизвестными опорными реакциями и количеством уравнений статики nst = 2 – 1 = 1 – задача один раз статически неопределимая и для раскрытия статической неопределимости требуется еще одно уравнение.

2. Рассмотрим геометрическую сторону задачи

Перемещение (угол закручивания) точки В (жесткая заделка) невозможно, тогда это перемещение можно представить как сумму углов закручивания грузовых участков φВ = φI = 0 (2).

3. Рассмотрим физическую сторону задачи

Угол закручивания на грузовом участке длиной , где Мt описывается линейным уравнением можно представить в виде:

(3). Подставим (3) в (2): . (4)

Запишем уравнение крутящих моментов на грузовом участке, рассматривая при этом равновесие правой части, содержащей опорную реакцию МВ: Мt,I = - МВ + mx, подставим уравнение внутреннего усилия в (4):

Решим полученное уравнение относительно одного неизвестного МВ. Далее задача решается как статически определимая.

Расчёт стержней при кручении по предельному состоянию. Рассмотрим распределение касательных напряжений в поперечном сечении круглого стержня, выполненного из упругопластического материала, подчиняющегося идеализированной диаграмме Прандтля (рис. 11.4 ).

Рис. 11.4. Диаграмма Прандтля

τmax < τs τmax = τs. τs τs

а ) б) в) г)

Mt = τsWρ Упругое ядро Пластический шарнир

(Mt, lim)

Рис. 11.5. Распределение касательных напряжений в поперечном сечении

При углах сдвига γ ≤ γs материал подчиняется закону Гука, т.е. τ = G γ, при γ = γs касательное напряжение достигает предела текучести τs, при γ > γs материал «течёт» при постоянном напряжении τ = τs. На этом заканчивается чисто упругая стадия работы (рис. 11.5 б) и момент достигает опасного значения. При дальнейшем увеличении крутящего момента эпюра напряжений приобретает вид, приведённый на рис. 11. 5 в. При увеличении крутящего момента упругое ядро уменьшается, и текучесть материала происходит по всему сечению, наступает состояние предельного равновесия, соответствующее максимуму несущей способности стержня. Для сплошного круглого сечения в случае, представленном на рис. 11. 5 г грузоподъёмность стержня повышается на 33% по сравнению с грузоподъёмностью, вычисленной для ситуации приведённой на рис. 11. 5 г.