Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
99
Добавлен:
02.05.2014
Размер:
5.92 Mб
Скачать

Термоэлектрические преобразователи Содержание.

  1. Принцип действия. Основные соотношения. Применяемые материалы. _______________________________________Стр. 2 - 8

  2. Конструкция термопар. _____________________________Стр. 8 - 13

  3. Погрешности термоэлектрических преобразователей и методы их коррекции. _______________________________________Стр. 13 - 26

  4. Контрольные вопросы. _____________________________Стр. 27

  5. Список литературы. ________________________________Стр. 28

Принцип действия. Основные соотношения. Применяемые материалы.

Явление термоэлектричества, открытое в начале прошлого века русским академиком Эпинусом, заключается в следующем. Если составить цепь из двух различных проводников (или полупроводников) А и В, соединив их между собой концами (рис.1), причем температуру t1 одного места соединения сделать отличной от температуры t0 другого, то в цепи появится э.д.с., называемая термоэлектродвижущей силой (термо-э.д.с.) и являющаяся разностью функций температур мест соединения проводников:

Подобная цепь называется термоэлектрическим преобразователем, или иначе термопарой; проводники, составляющие термопару, - термоэлектродами, а места их соединения – спаями.

Термопара может быть применена для измерения температуры. Если один спай термопары, называемый рабочим спаем, поместить в среду с температурой t1, подлежащей измерению, а температуру другого – нерабочего – спая поддерживать постоянной, то и

независимо от того, каким образом произведено соединение термоэлектродов (спайкой, сваркой и т.д.). Последняя взаимосвязь и положена в основу измерения температур при помощи термопар. Таким образом, естественной входной величиной термопары является температура t1 ее рабочего спая, а выходной величиной термо-э.д.с., которую термопара развивает при строго постоянной температуре t0 нерабочего спая.

Приборы, представляющие собой сочетание термопары и указателя, используемые для измерения температуры, часто называют не термометрами, а термоэлектрическими пирометрами, хотя никакого принципиального различия между этими терминами нет.

Включить указатель в цепь термопары можно как по наиболее часто применяемой схеме рис.2,а (здесь два нерабочих спая), так и по схеме рис.2,б. Для того чтобы включение в цепь термопары указателя (т.е. третьего проводника) не изменило значения термо-э.д.с., места соединения указателя с термоэлектродами должны иметь одинаковую температуру.

Рис.1. Термоэлек­трическая цепь

Рис. 2. Включение указателя в термоэлектрическую цепь

Материалы, применяемые для термопар. Для измерения температур до 1100С используют в основном термопары из неблагородных металлов, а для измерения температур выше 1100 и до 1600С – термопары из благородных металлов платиновой группы и, наконец, для измерения температур более 1600С – различные термопары, изготовленные из очень жароупорных материалов.

Для термопар, не погружаемых непосредственно в печь (например, для термопар радиационных пирометров), применяют также металлические термоэлектроды в паре с неметаллами (например, теллур, кремний и т.п.). Эта категория термопар развивает термо-э.д.с., значительно превышающие термо-э.д.с. термопар из металлических термоэлектродов, но не отличается механической прочностью.

Направление термо-э.д.с. зависит лишь от природы материалов, используемых в качестве термоэлектродов. Положительным называют тот термоэлектрод, по направлению к которому ток идет через рабочий спай термопары.

В табл.1 приведены термо-э.д.с., которые развиваются различными термоэлектродами в паре с платиной при температуре рабочего спая t1=100C и температуре нерабочих спаев t0=0C.

Таблица 1

Материал

Термо-э.д.с., мв

Материал

Термо-э.д.с., мв

Кремний

+44,8

Свинец

+0,44

Сурьма

+4,7

Олово

+0,42

Хромель

+2,4

Магний

+0,42

Нихром

+2,2

Алюминий

+0,40

Железо

+1,8

Графит

+0,32

Сплав (90% Pt+10% Ir)

+1,3

Уголь

+0,30

Молибден

+1,2

Ртуть

0,00

Кадмий

+0,9

Палладий

-0,57

Вольфрам

+0,8

Никель

-1,5

Манганин

+0,76

Алюмель

-1,7

Медь

+0,76

Сплав (60%Au+30%Pd+10%Pt)

-2,31

Золото

+0,75

Константан

-3,4

Цинк

+0,75

Копель

-4,5

Серебро

+0,72

Висмут оси

-5,2

Иридий

+0,65

Висмут  оси

-7,7

Родий

+0,64

Пирит

-12,1

Сплав (90% Pt+10% Rh)

+0,64

Молибденит

От –69 до -104

Примечание: состав сплавов: хромель 90%Ni+10%Cr;алюмель 1%Si+2%Al+0,17%Fe+Ni(остальное); копель 56,5%Cu+43,5%Ni.

При пользовании данными таблицы следует иметь ввиду, что развиваемые термоэлектродами термо-э.д.с. в значительной степени зависят от малейших присей, механической обработки (наклеп) и термической обработки (закалка, отжиг).

При конструировании термопар, естественно, стремятся сочетать термоэлектроды, один их которых развивает с платиной наиболее положительную, а другой – отрицательную термо-э.д.с.. При этом необходимо учитывать также пригодность того или иного термоэлектрода для применения в заданных условиях измерения (влияние на термоэлектрод среды, температуры и т.д.).

Термопары из благородных металлов (платиновой группы) имеют широкое распространение в основном как образцовые термопары для измерения температур выше 1000С. Основной термопарой этой группы является термопара платинородий – платина, один термоэлектрод которой представляет собой чистую платину, а второй – сплав (90%Pt+10%Rh). Эта термопара может применяться для измерения температур до 1600С кратковременно и до 1400С длительно и развивает при 1600С термо-э.д.с., равную 17 мв (при температуре нерабочих спаев, равной нулю). При температурах выше 1400С электроды начинают взаимодействовать с окружающими элементами, вследствие чего изменяются термоэлектрические характеристики термопары. Достоинством этой термопары является ее химическая стойкость в окислительной среде, восстановительная же среда отравляет термопару.

Для измерения температур до 1800С применяют термопары из платинородиевых сплавов с различным содержанием родия, например термопару ПР 30/6. В ней положительным термоэлектродом является сплав, состоящий из 70%Pt и 30%Rh, а отрицательным термоэлектродом – сплав из 94%Pt и 6%Rh. Верхним пределом кратковременно измеряемой температуры для этой термопары можно принять температуру 1750С. Термопара ПР30/6 развивает при 1546С термо-э.д.с., равную 10,82 мв. Термопары с другим содержанием родия (ПР40/10, ПР30/13 и ПР40/20) развивают несколько меньшую термо-э.д.с., чем термопара ПР30/6, но пригодны для измерения немного более высоких температур (до 1800 - 1850С).

Термопары из неблагородных металлов и других материалов. Из числа термопар этой группы стандартными являются четыре термопары, основные характеристики которых указаны в таблице 2.

Таблица 2

Наименование термопары

Термо-э.д.с. при t1=100 C, t0=0 C, мв

Верхний предел измеряемой температуры, С

При длительном измерении

При кратковременном измерении

Медь – копель

4,75

350

500

Железо – копель

5,75

600

800

Хромель – копель

6,90

600

800

Хромель - алюмель

4,10

1100

1250

Особенно широко применяется термопара хромель – алюмель. Эта термопара хорошо работает в окислительной среде благодаря возникновению при нагреве тонкой защитной пленки окислов, препятствующей проникновению кислорода внутрь металла. Восстановительная среда, напротив, вредно действует на эту термопару, разрушая пленку окислов.

Термопара хромель – копель химически стойка в окислительной и несколько менее стойка в восстановительной средах (в пределах температур до 600С). следует особо отметить высокую термо-э.д.с., развиваемую термопарой хромель – копель, однако ее термоэлектрическая характеристика отличается значительно большей нелинейностью по сравнению с характеристикой термопары хромель – алюмель (рис.3).

Термопары железо – копель и медь – копель не получили распространения ввиду отсутствия у них каких-либо существенных преимуществ по сравнению с термопарой хромель – копель.

Кроме описанных стандартных термопар, применяется и ряд нестандартных термопар на константановой

Рис. 3. Термоэлектрические ха­рактеристики термопар хромель-ко-пель и хромель-

основе, близких по свойствам к аналогичным термопарам с копелевым термоэлектродом:

медь – константан, железо – константан и нихром – константан.

В группе термопар, предназначенных для измерения температур превышающих 1600С, следует отметить термопару вольфрам – молибден. К достоинствам такой термопары относятся высокая температура плавления обоих электродов, доступность получения этих материалов и их сравнительно небольшая

стоимость. Недостатками этих термоэлектродов являются их быстрое окисление и хрупкость при высоких температурах, а такженевоспроизводимость характеристики термо-э.д.с., что требует индивидуальной градуировки каждой такой термопары.

Большой интерес для измерения высоких температур в условиях воздействия различных агрессивных сред представляет термопара из борида и карбида циркония (ZrB2 и ZrC) – твердых тугоплавких соединений. Борид и карбид циркония обладают при относительно высокой прочности низким электрическим сопротивлением и хорошей теплопроводностью. Они устойчивы против действия водорода, окиси углерода, смеси окиси углерода с азотом, расплавленных цветных и черных металлов, а также некоторых расплавленных солей и шлаков. Термопара с электродами из борида и карбида циркония, как показали исследования, имеет практически линейную термоэлектрическую характеристику и развивает термо-э.д.с. около 16 мв при 1800С.

Помимо перечисленных термопар, существует ряд других, не нашедших пока широкого применения.

Конструкции термопар.

Конструктивное устройство термопар промышленного типа, применяемых для измерения температуры в печах, соляных ваннах, газоходах, рассмотрим на примере термопары, изображенной на рис.4.

Рис. 4. Конструкция термопар с термоэлектродами из неблагородных

металлов

Эта термопара с термоэлектродами из неблагородных металлов, расположенными в составной защитной трубе с подвижным фланцем для ее крепления. Рабочий спай 1 термопары изолирован от трубы фарфоровым наконечником 2. Термоэлектроды изолированы бусами 3. Передвижной фланец состоит из рабочего 4 и нерабочего 5 участков. Передвижной фланец 6 крепиться к трубе винтом. Головка термопары имеет литой корпус 7 с крышкой 8, закрепленной винтами 9. В головке укреплены фарфоровые колодки 10 (винтами 11) с «плавающими» (незакрепленными) зажимами 12, которые позволяют термоэлектродам удлиняться под воздействием температуры без возникновения механических напряжений, ведущих к быстрому разрушению термоэлектродов. Термоэлектроды крепятся к этим зажимам винтами 13, а соединительные провода – винтами 14. Эти провода проходят через штуцер 15 с асбестовым уплотнением.

Основным вопросом при конструировании термопар промышленного типа является выбор материала защитной трубы (арматуры) и изоляции. Защитная арматура термопары должна оградить ее от воздействия горячих, химически агрессивных газов, быстро разрушающих термопару. Поэтому арматура должна быть газонепроницаемой, хорошо проводящей тепло, механически стойкой и жароупорной. Кроме того, при нагревании она не должна выделять газов и паров, вредных для термоэлектродов.

При температурах, не превышающих 600С, обычно применяют стальные трубы без шва, при более высоких температурах (до 1100С) – защитные трубы из легированных сталей. Для уменьшения стоимости защитных труб их часто выполняют составными (сварными) из двух частей: рабочий участок трубы – из нержавеющей стали, а нерабочий – из обычной стали.

Для термопар из благородных металлов часто применяют неметаллические трубы (кварцевые, фарфоровые и т.д.); однако такие трубы механически непрочны и дороги. Фарфоровые трубы надлежащего состава можно использовать при температурах до 1300 - 1400С.

Применяя защитные трубы из карбида кремния и графита, необходимо учитывать, что при нагревании они выделяют восстанавливающие газы; поэтому помещаемые в них термопары (особенно термопары на платиновой основе) должны быть защищены дополнительным газонепроницаемом чехлом.

В качестве изоляции термоэлектродов друг от друга применяют асбест – до 300С; кварцевые трубки или бусы – до 1000С; фарфоровые трубки или бусы – до 1300-1400С. Для лабораторных термопар, используемых при измерении низких температур, применяют также теплостойкую резину – до 150С; шелк – до 100-120С; эмаль – до 150-200С.

Термоэлектроды термопары, помещаемые в защитную трубу, обычно выполняют жесткими, а соединение их с последующими частями измерительной цепи для удобства монтажа осуществляется гибкими проводами с надлежащей изоляцией. Соединительные провода А1В1 (рисунок 5), идущие от зажимов в головке термопары до места нахождения нерабочих спаев (до места соединения с проводами указателя), называется удлинительными термоэлектродами.

Удлинительные термоэлектроды для термопар из неблагородных металлов и других материалов выполняют из тех же материалов, что и термоэлектроды термопары. Для термопар из благородных металлов пользоваться удлинительными термоэлектродами из тех же металлов крайне невыгодно; кроме того, некоторые термоэлектроды не могут быть выполнены в виде гибких проводов. Поэтому удлинительные термоэлектроды в этих случаях изготавливают из неблагородных металлов и других материалов. Чтобы при включении удлинительных термоэлектродов из материалов, отличных от материалов основных термоэлектродов, не изменилась термо-э.д.с. термопары, необходимовыполнить два условия:

  1. Удлинительные термоэлектроды должны быть термоэлектрически идентичны с основной ермопарой в диапазоне возможных температур нерабочего спая и места соединения термоэлектродов в головке термопары (примерно в диапазоне от 0 до 100С). иначе говоря, удлинительные

  1. термоэлектроды в указанном интервале

  1. температур должны иметь такую же термо-э.д.с., как и электроды основной термопары.

  2. Места присоединения удлинительных термоэлектродов к основным термоэлектродам в головке термопары должны иметь одинаковую температуру.

При невыполнении хотя бы одного из этих условий возникает погрешность измерения.

Для термопары платинородий - платина применяются удлинительные термоэлектроды из меди и сплава ТП, образующие термопару,

Рис.5. Термоэлектрическая цепь с удлинительными термо­электродами и термостатирован­ными нерабочими спаями

платина в пределах до 150С. Такие же удлинительные термоэлектроды с измененными знаками полярности применяют для термопары вольфрам – молибден. Для термопары хромель – алюмель удлинительные термоэлектроды изготавливаются из меди

и константана. Для термопары хромель – копель удлинительными являются основные термоэлектроды, но выполненные в виде гибких проводов.

Большое значение при измерении температуры с помощью термопар имеет их инерционность, определяемая как время, за которое показания термопары при переносе из среды с комнатной температурой (15-20С) в среду с температурой 100С достигают 97-98С. для термопары, приведенной на рисунке 4, инерционность составляет 5-8 минут.

Для уменьшения инерционности стремятся обеспечить наилучший тепловой контакт между рабочим спаем термопары и средой, температура которой подлежит измерению. Так, термопары типа той которая изображена на рисунке 4, но в которых рабочий спай вварен в дно трубы, имеют инерционность, не превышающую 2-3 минут, однако такие термопары быстрее выходят из строя, чем обычные.

Конструкции термопар, применяемых для измерения температуры жидкой стали (платинородий – платина, вольфрам-молибден), отличаются наличием специальных деталей (наконечников), защищающих рабочий конец термопары от воздействия агрессивных газов. Кроме того, в этих термопарах стремятся получить малую инерционность. Последняя обеспечивает возможность проведения быстрых (в пределах одной минуты) измерений, что в свою очередь способствует уменьшению воздействия агрессивной среды и сохранению термопары.

Соседние файлы в папке Эл курс фопи 2