
- •Содержание
- •Глава 2. Использование ультразвуковых преобразователей
- •Контрольные вопросы
- •Введение
- •Глава 1. Физические основы ультразвуковых колебаний.
- •1.1. Природа и получение ультразвуковых колебаний
- •1.2. Свойства ультразвука
- •1.3. Методы ультразвуковой дефектоскопии
- •1.4.Применение ультразвука
- •Глава 2. Использование ультразвуковые преобразователи.
- •2.1.Исторический обзор
- •2.2. Классификация преобразователей
- •2.3. Конструктивные особенности преобразователей
- •2.4.Выбор акустических параметров при проектировании ультразвуковых устройств
- •2.5.Резонансная частота и чувствительность преобразователя
- •2.6. Специальные преобразователи и контактные среды
- •2.7. Электромагнитные ультразвуковые преобразователи
- •2.8. Пьезоэлектрические преобразователи
- •2.9. Термин “Пьезоактивность”
- •2.11. Область применения пьезоэлектрических преобразователей
2.3. Конструктивные особенности преобразователей
Основные акустические параметры наклонных преобразователей — ширина диаграммы направленности, разрешающая способность (по оси пучка), чувствительность— определяются их конструкцией, а именно: размерами и конфигурацией, углом ввода, акустическими константами призмы и степенью демпфирования.
Преобразователь состоит из следующих основных элементов: пьезопластины, демпфера, призмы, протектора и корпуса.
Пьезопластина — является основным элементом ПЭП. Ее изготавливают из пьезоэлектрических материалов: кварца, цирконата-титаната свинца (ЦТС), титаната бария и др. Пьезопластина обычно имеет толщину, равную половине длины волны УЗК в пьезоматериале на рабочей частоте. На противоположных поверхностях пластины располагаются металлические (обычно серебряные) электроды для приложения электрического поля. От формы электродов зависят работающие участки пьезопластин. Во избежание пробоя по краям пластины часто оставляют неметаллизированную полоску.
Демпфер служит для гашения свободных колебаний пьезопластины, т.е. для получения коротких УЗ-импульсов, а также для предупреждения механических повреждений пьезопластин, особенно тонких. Материал демпфера и его форма должны обеспечивать достаточно сильное затухание УЗК без многократных отражений. В некоторых ПЭП (например, наклонных) демпфер часто отсутствует.
Призма
изготовляется обычно из износостойкого
материала с небольшой скоростью
ультразвука (оргстекло, полистирол,
поликарбонат, деклон, капролон и др.),
что позволяет при относительно небольших
углах падения
получать углы преломления
до 90°. Размер призмы зависит главным
образом от размера и формы пьезопластины.
При разработке и изготовлении преобразователей размеры, форму и материал призмы выбирают таким образом, чтобы они по возможности удовлетворяли следующим основным требованиям: обеспечивали достаточное гашение УЗК, возникающих при отражении волн на границе раздела призма — изделие, при этом незначительно ослабляли УЗК в самой призме. Кроме того, материал призмы должен обладать износостойкостью и смачиваемостью, а в ряде случаев и термостабильностью.
Протектор защищает пьезоэлемент от изнашивания и воздействия контактной жидкости, улучшает акустический контакт при контроле контактным способом. Для повышения износостойкости преобразователя к пьезопластине приклеивают протекторы толщиной 0,1 — 0,5 мм из кварца, бериллия, стали, смол с порошковым наполнителем (например, порошком из компаунда или бериллия) и т. п. Протекторы также изготавливают в виде сменных пленок из эластичных пластмасс, например из полиуретана. В этом случае между пьезопластиной и протектором вводят контактную жидкость (масло).
Корпус преобразователя обеспечивает прочность конструкции, а также экранирование пьезоэлемента и выводов от электронных помех (для этого корпус из пластмассы металлизируют).
2.4.Выбор акустических параметров при проектировании ультразвуковых устройств
При проектировании ультразвукового технологического устройства необходимо решать следующие задачи: расчет и конструирование ультразвуковой колебательной системы, подбор источников питания и проектирование кинематики перемещения отдельных узлов установки.
В процессе расчета ультразвуковых преобразователей определяют рабочую частоту, потребляемую мощность, входное электрическое сопротивление преобразователя. Этот комплекс параметров определяет возможность комплектации ультразвуковой технологической установки универсальным генератором или необходимость проектирования специализированного ультразвукового генератора.
Остальные узлы ультразвуковых технологических установок проектируют с учетом специфики конкретного технологического процесса.
Расчет и конструирование ультразвукового узла начинают с определения основных акустических параметров, которые обеспечивают заданные характеристики технологического процесса. Такими параметрами являются: частота, амплитуда колебаний (удельная акустическая мощность), площадь рабочей поверхности излучателя (инструмента). При этом в процессе проектирования ультразвукового узла в ряде случаев необходимо удовлетворить заданным ограничениям по массе и габаритным размерам.
Рабочую частоту выбирают с учетом влияния многих факторов. Для большинства технологических процессов частота колебаний определяет эффективность самого процесса. Например, при очистке, связанной с кавитационной эрозией, эффективность растет с понижением частоты в пределах ультразвукового диапазона, производительность ультразвуковой обработки при постоянной амплитуде смещений растет с увеличением частоты. При повышении частоты уменьшаются габаритные размеры и масса колебательной системы, облегчается выполнение санитарно-гигиенических требований к шуму ультразвуковых установок, но падает амплитуда колебательных смещений и КПД системы.
При определении акустической мощности необходимо учитывать назначение колебательной системы. Она может быть предназначена:
Для процессов, связанных с кавитационной активностью жидкости, оптимальное значение удельной акустической мощности для водных сред составляет Wa=l„5—2,0 Вт/см2. Этому значению удельной акустической мощности соответствует амплитуда колебательной скорости на поверхности излучателя 0,2 м/с.
Условия работы при излучении в среду характеризуются заданной площадью излучения и удельной акустической мощностью, которая определяется для данного технологического процесса.