Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1bennet_b_g_chernobyl_looking_back_to_go_forward.pdf
Скачиваний:
5
Добавлен:
19.11.2019
Размер:
2.83 Mб
Скачать

ANSPAUGH

plants, a comprehensive safety and environmental impact assessment that encompasses all activities inside the entire exclusion zone should be performed.

During the preparation and construction of the NSC and soil removal, special monitoring wells are expected to be destroyed. Therefore, it is important to maintain and improve environmental monitoring strategies, methods, equipment and staff qualifications needed for adequate performance of the monitoring of the conditions at the Chernobyl nuclear power plant site and the exclusion zone.

The development of an integrated radioactive waste management programme for the shelter, the Chernobyl nuclear power plant site and the exclusion zone is needed to assure application of consistent management approaches, and sufficient facility capacity for all waste types. Specific emphasis needs to be paid to the characterization and classification of waste (in particular waste with transuranic elements).

A coherent and comprehensive strategy for the rehabilitation of the exclusion zone is needed with particular focus on improving safety of the existing waste storage and disposal facilities. This will require development of a prioritization approach for the remediation of the sites, based on safety assessment results.

ACKNOWLEDGEMENTS

This work was carried out under the sponsorship of the United Nations, with the IAEA providing scientific, technical and administrative support. The author was the Chairman of the Expert Group on Environment, and Mikhail Balonov served as its Scientific Secretary. The other 33 members of the group were R. Alexakhin, B. Batandjieva, F. Besnus, H. Biesold, I. Bogdevich,

D. Byron, Z. Carr, G. Deville-Cavelin,

I. Ferris,

S. Fesenko, N. Gentner,

V. Golikov,

A. Gora, J. Hendry, T. Hinton, B.

Howard, V. Kashparov,

G. Kirchner,

T. LaGuardia, D. Louvat,

L. Moberg, B. Napier, B. Prister,

M. Proskura, D. Reisenweaver, E. Schmieman, G. Shaw, V. Shestopalov, J. Smith, P. Strand, Yu. Tsaturov, O. Voitsekhovich and D. Woodhead.

74

SESSION 1

REFERENCES

[1]INTERNATIONAL ATOMIC ENERGY AGENCY, Environmental Consequences of the Chernobyl Accident and their Remediation: Twenty Years of Experience Report of the UN Chernobyl Forum Expert Group “Environment”, Radiological Assessment Reports, IAEA, Vienna (2006).

[2]UNITED NATIONS, Sources and Effects of Ionizing Radiation (Report to the General Assembly, with Scientific Annexes), Scientific Committee on the Effects of Atomic Radiation, UN, New York, Volume II (2000) 451–566.

[3]DREICER, M., AARKROG, A., ALEXAKHIN, R., ANSPAUGH, L., ARKHIPOV, N.P., JOHANSSON, K.-J. “Consequences of the Chernobyl accident for the natural and human environments”, One Decade after Chernobyl: Summing up the Consequences of the Accident (Proc. Int. Conf.), IAEA, Vienna (1996) 319–361.

[4]MÜCK, K., et al., A consistent radionuclide vector after the Chernobyl accident, Health Phys. 82 (2002) 141–156.

[5]KASHPAROV V.A., et al., Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout, Science Total Environ. 317 (2003) 105–119.

[6]DE CORT, M., et al., Atlas of Caesium Deposition on Europe after the Chernobyl Accident, Rep. EUR 16733, EC, Luxembourg (1998).

[7]IZRAEL YU., (Ed.), “Atlas of radioactive contamination of European Russia, Belarus and Ukraine”, Federal Service for Geodesy and Cartography of Russia, Moscow (1998).

[8]ROED, J., ANDERSSON, K., Personal communication to the UN Chernobyl Forum (2002).

[9]RENAUD, P.H., BEAUGELIN, K., MAUBERT, H., LEDENVIC, P.H., Les retombees en France de l’accident de Tchernobyl, consequences radioecologiques et dosimetriques, IPSN Collection, EDP Sciences (1999).

[10]FESENKO, S.V., et al., Regularities of changing in 137Cs activity concentrations in the long term after the accident at the Chernobyl NPP. Radiation biology. Radioecol. 44 (2004) 35–49.

[11]JOHANSSON, K., Personal communication to the Chernobyl Forum (2003).

[12]INTERNATIONAL ATOMIC ENERGY AGENCY, Radiation Conditions of the Dnieper River Basin: Assessment by the IAEA project team and recommendations for Strategic Action Plan. IAEA, Vienna (2006).

[13]UKRAINIAN HYDRO-METEOROLOGICAL INSTITUTE, Database of Radiation Measurements of Aquatic Samples, Kiev (2004).

[14]ROED J., ANDERSSON K., PRIP H., Practical Means for Decontamination 9 years after a Nuclear Accident, Risø National Laboratory, Risø-R-828(EN), Roskilde (1995).

75

ANSPAUGH

[15]SHEVCHUK, V.E., GOURACHEVSKIY, V.L., (Eds) 15 Years After Chernobyl Catastrophe: Consequences in the Republic of Belarus and their Overcoming, National Report, Committee on the Problems of the Consequences of the Accident at the Chernobyl NPP, Minsk (2001) 118 pp.

[16]ÅHMAN, B., Personal communication to the Chernobyl Forum. Data from the Swedish Board of Agriculture, Jönköping, Sweden (2005).

[17]WORLD HEALTH ORGANIZATION, Health Effects of the Chernobyl Accident and Special Health Care Programmes, WHO, Geneva (2006).

[18]GOLIKOV V.YU., BALONOV M.I., JACOB P., External exposure of the population living in areas of Russia contaminated due to the Chernobyl accident, Radiat. Environ. Biophys. 41 (2002) 185–193.

[19]BERKOVSKI, V., VOITSEKHOVITCH, O., NASVIT, O., ZHELEZNYAK, M., SANSONE, U., “Exposures from aquatic pathways”, The Radiological Consequences of Chernobyl Accident (KARAOGLOU, A., DESMET, G., KELLY, G.N., MENZEL, H.G., Eds), Rep. EUR 16544 EN, EC, Luxembourg (1996a) 283–294.

[20]BERKOVSKI, V., RATIA, G., NASVIT O., Internal doses to Ukrainian population using Dnieper River water, Health Phys. 71 (1996) 37–44.

76

CANCER EFFECTS OF THE

CHERNOBYL ACCIDENT*

E. CARDIS

International Agency for Research on Cancer,

Lyon,

Email: cardis@iarc.fr

Abstract

Today, nearly 20 years after the Chernobyl accident, there is (apart from the dramatic increase in thyroid cancer incidence among those exposed in childhood and adolescence) no clearly demonstrated increase in the incidence of cancers in the most affected populations that can be attributed to radiation from the accident. Increases in incidence of cancers in general and of specific cancers (in particular breast cancer) have been reported in Belarus, the Russian Federation and Ukraine, but much of the increase appears to be due to other factors, including improvements in diagnosis, reporting and registration. Recent findings indicate a possible doubling of leukaemia risk among Chernobyl liquidators and a small increase in the incidence of premenopausal breast cancer in the very most contaminated districts, which appear to be related to radiation dose. Both of these findings, however, need confirmation in welldesigned analytical epidemiological studies with careful individual dose reconstruction. The absence of demonstrated increases in cancer risk, apart from thyroid cancer, is not proof that no increase has in fact occurred. Based on the experience of atomic bomb survivors, a small increase in the relative risk of cancer is expected, even at the low to moderate doses received. Such an increase, however, is expected to be difficult to identify in the absence of careful large scale epidemiological studies with individual dose estimates. It should be noted that, given the large number of individuals exposed, the absolute number of cancer cases caused by even a small increase in the relative risk could be substantial, particularly in the future. At present, the prediction of the cancer burden related to radiation exposure

* Paper prepared by E. Cardis, G. Howe, V. Drozdovitch and A. Kesminiene for the International Chernobyl Forum Expert Group on Health. Note: The members of the Expert Group on Health who reviewed the cancer health effects of the accident were: M. Balonov, V. Bebeshko, E. Buglova, T. Bogdanova, A. Bouville, E. Cardis, Z. Carr, V. Chumak, S. Davis, Y. Demidchik, V. Drozdovitch, N. Gentner, N. Gudzenko, M. Hatch, G. Howe, V. Ivanov, P. Jacob, E. Kapitonova, J. Kenigsberg, A. Kesminiene, K. Kopecky, V. Kryuchkov, I. Likhtarev, A. Loos, A. Pinchera, C. Reiners, M. Repacholi, E. Ron, Y. Shibata, R. Shore, G. Thomas, M. Tirmarche, B. Wachholz, S. Yamashita and I. Zvonova.

77