- •1.Що є предметом теорії імовірності?
- •2.Дати означення підмножини скінченної (нескінченної), зліченої і незліченої. Навести приклад.
- •3. Дати означення об’єднаня суми, різниці та добутку множин. Навести приклади.
- •4.Дати означення сполучення та розміщення. Записати формулу для обчислення числа ціх сполук. Навести приклади
- •5. Записати формулу, що пов’язує число переставлень, сполучень та розміщень. Сформулювати правила суми та добутку. Навести приклади.
- •7. Дати означення сумісних, несумісних та попарно несумісних подій. Навести приклади.
- •8. Дати означення суми (об’єднання), різниці та добутку (перетину) подій, протилежної події, повної групи подій. Навести приклади.
- •9. Як випадкова подія виражається через елементарні наслідки випадкового експерименту? Які елементарні наслідки називаються такими, що сприяють появі даної події? Навести приклади.
- •10. Сформулювати класичне визначення імовірності події і записати відповідну формулу. Навести приклади.
- •11.(Геометричне визначення).
- •12. Дати означення частоти та відносної частоти події.
- •13. Сформулювати теореми: а) про імовірність суми двох подій; б) про імовірність суми двох несумісних подій; в) про імовірність суми декількох попарно несумісних подій. Навести приклади.
- •14. Дати означення незалежності і залежності двох подій, умовної імовірності події, попарної незалежності декількох подій, незалежності у сукупності декількох подій. Навести приклади.
- •15. Записати формулу для обчислення імовірності хочаб однієї з декількох подій, незалежних у сукуупності.Пояснити букви, навести приклади.
- •16. Записати формули: а) повної імовірності; б) Байеса. Пояснити зміст позначень. Навести приклади.
- •17. Навести умови схеми випробувань Бернулі. Записати формулу Бернулі.Навести приклади застосування.
- •18. Граничні теореми у схемі випробувань Бернулі. А)Пуассона. Б) Локальну та інтегральну Лапласа.
- •19.Записати формули для обчислення в схемі бернулі: а)імовірності відхилення частоти від імовірності б)найбільш імовірного числа появи подій
- •20. Дати означення випадкової величини (в.В.), дискретної (д.В.В.) та неперервної випадкої величини (н.В.В.). Навести приклади.
- •21. Дати означення закону та багатокутника розподілу ймовірностей д.В.В. Навести приклади.
- •22. Дати означення інтегральної та диференціальної функції розподілу н.В.В. Вказати їх основні властивості. Навести приклади.
- •24. Пояснити, що характеризують: а) математичне сподівання; б) дисперсія та середнє квадратичне відхилення; в) асиметрія; г) ексцес; д) мода; е) медіана.
- •25. Довести основні властивості математичного сподівання і дисперсії.
- •26. Записати основні закони розподілу д.В.В.: а) біноміальний ; б)Пуассона; в)геометричний. Пояснити зміст букв. Навести приклади д.В.В., розподілених за цими законами.
- •27. Записати основні закони розподілу н.В.В.: а) рівномірний; б) нормальний; в) показниковий. Пояснити зміст букв. Навести приклади н.В.В., розподілених за цими законами.
- •28. Пояснити зміст терміну «закон великих чисел». Довести нерівність Чебишова в усіх формах. Навести приклади її застосування.
- •29 Сформулювати основні теореми закону великих чисел: а) Бернуллі; б) Чебишова; Пояснити значення цих теорем для практики.
- •30. Сформулювати центральну граничну теорему у формі Леві-Ліндеберга в усіх видах. Довести інтегральну теорему Мавра-Лапласа як окремий випадок попередньої теореми.
- •31.Дати означення системі випадкових величин. Навести приклади. Дати означення закону розподілу дискретної двовимірної випадкової величини. Навести приклади.
- •32 Дати означення ф-ціїї розподілу двв. Основні властивості ф-ції розподілу, її геометричний зміст.
- •33 Дати означеня щільностей ймовірностей двв. Основні властивості, імовірнісний зміст.
- •34 Записати ф-ли для обчислення ймовірностей попадання випадкової точки в довільну двомірну область d; в прямокутник.
- •35 Означення залежності (незалежності) випадкових величин, що входять в с-му вв. Теореми про необхідну та достатню умови незалежності.
- •39. Навести основні властивості кореляційного моменту μxy та коефіцієнту кореляції rxy
- •40. Дати означення корельованості (некорельованості) двох в.В. Пояснити різнцю і зв’язок між корельованістю (некорельованістю) і залежністю двох в.В.
- •41 Вивести рівняння лінійної середньоквадратичної регресії y на х(х на y). Пояснити зміст позначень.Дати означення коефіцієнту регресії , залишкової дисперсії та пояснити, що вони характеризують.
- •42. Сформулювати теорему про корельованість складових нормально розподіленої двовимірної в.В.
- •47 Дати означення а) генеральної та вибіркової сукупності б) обсягу вибірки в) повторної, безповоротної та репрезентативної вибірок
- •48 Дати означення естатистичної (емпіричної) функції розподілу та сформулювати її основні властивості
- •49 Дати означення кумулятивних частоти та відносної частоти
- •50 Дати означення полігону та гістограми
- •51 Дати означення точкової статистичної оцінки параметру розподілу генеральної сукупності
- •54 Дати означення вибіркових: а)моди і медіани; б) початкового та центрального моментів; в) коефіцієнтів асиметрії та ексцесу. Навести приклади знаходження (обчислення).
- •55 Дати означення: а) інтервальної оцінки параметра генеральної сукупності, її точності та надійності; б) надійного інтервалу. Навести приклади.
- •58 Записати формулу для обчислення кінців надійного інтервалу для оцінки середнього квадратичного відхилення нормальної розділеної генеральної сукупності
- •59 Дати означення емпіричної та теоретичної частот
- •60Дати озн функціональної, стохастичної, кореляційної залежності, умовного середнього, вибіркових рівняння та лінії регресії.
- •62 Записати формулу для обч вибіркової кореляції кінців надійного інтервалу для інтерн. Оцінки коеф кореляції нормально розподіленої ген сукупності
- •63 Дати означення статистичної гіпотези, нульової та альтернативної гіпотез
- •64 Дати означення рівня значущості та потужності статистичного критерію
- •65 Дати означення рівня значушості та потужності статистичного критерію
- •66 Навести приклади перевірки гіпотез про: рівність генеральних дисперсій двох нормально розподілених генеральних сукупностей
24. Пояснити, що характеризують: а) математичне сподівання; б) дисперсія та середнє квадратичне відхилення; в) асиметрія; г) ексцес; д) мода; е) медіана.
А)Математичне сподівання в.в. Х характеризує середнє значення Х із врахуванням ймовірностей його можливих значень. В практичній діяльності під математичним сподівання розуміють центр розподілу в.в. Дисперсія характеризує розсіювання можливих значень Х відносно центру розподілу в.в. Середнє квадратичне відхилення випадкової величини характеризує величину розсіювання в.в. в розмірності цієї величини. Асиметрія характеризує симетричний чи асиметричний розподіл та правосторонній чи лівосторонній. Ексцес характеризує плосковерхість чи гостроверхість розподілу, порівняно з нормативним розподілом з тим же значенням дисперсії .При графічному способі зображення закону розподілу в.в., значення в.в. імовірність якого найбільша, називають модою (М0). Медіана (Ме)— це середина відрізку між математичним сподіванням та модою.
25. Довести основні властивості математичного сподівання і дисперсії.
Основні властивості математичного сподівання
1. Математичне сподівання постійної величини дорівнює самій постійній М(С) = С.
2. Постійний множник можна виносити за знак математичного сподівання М(СХ)=С*М(Х).
3. Математичне сподівання добутку декількох взаємно незалежних дискретних випадкових величин дорівнює добутку їх математичних сподівань, тобто М(Х1*Х2*…*Хn) = М(Х1)*М(Х2)*…*М(Хn). 4. Математичне сподівання суми випадкових величин дорівнює сумі їх математичних сподівань, тобто М(Х1+Х2+…+Хn ) = М(Х1)+М(Х2)+…+М(Хn)
Основні властивості дисперсії
1. Дисперсія
будь-якої ДВВ Х невід’ємна :
Дійсно, (Х – М(Х))2 невід’ємна, тому згідно
означення математичного сподівання та
властивостей pk , k =1,2, … , n , D(X) також
невід’ємна. 2. Дисперсія постійної
величини С дорівнює нулеві: D(X) = 0 Дійсно,
якщо Х=С, то М(С)= С, тому С – М(С) = 0 3.
Постійний множник С можна виносити за
знак дисперсії, при цьому постійний
множник треба піднести у квадрат D(СX)
= С2 D(X). Дійсно, СХ – М(СХ) = С (Х – М(Х)),
тому (СХ – М(СХ))2 = С2 (Х – М(Х))2. Постійний
множник С2 можна виносити за знак
математичного сподівання, тому з формули
D(X) = М((Х – М(Х))2) випливає потрібна
рівність D(СX) = С2 D(X). 4. Дисперсія ДВВ Х
дорівнює різниці між математичним
сподіванням квадрата випадкової величини
Х та квадрата її математичного сподівання
D(X) = М(Х2) – (М(Х))2. Дійсно, D(X) = М((Х – М(Х))2)
= М(Х2 – 2ХМ(Х) + М2(Х)) = М(Х2) – 2М2(Х) + М2(Х) =
М(Х2) - М2(Х). 5. Дисперсія алгебраїчної
суми ДВВ Х та Y дорівнює сумі їх дисперсій
26. Записати основні закони розподілу д.В.В.: а) біноміальний ; б)Пуассона; в)геометричний. Пояснити зміст букв. Навести приклади д.В.В., розподілених за цими законами.
1.
Біноміальний
Х-число експериментів, в яких відбувається подія. n – кількість незалежних експериментів
Даному законну підкоряється число неякісних товарів із необмеженої партії продукції
2.Пуассона
a=λT=np
– середнє число подій, що потрапляють
на інтервал T
λ-інтенсивність
настання подій T-певний
період часу
Добре описується число вимог на оформлення документів за певний відрізок часу, число незапланованих перевірок за деякий час, число викликів на АТС за добу, число вимог на виплату страхових сум за рік, число відмов елементів під час іспитів на надійність пристроїв.
3.Геометричний
