Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тер.вер..doc
Скачиваний:
2
Добавлен:
19.11.2019
Размер:
713.73 Кб
Скачать

17. Навести умови схеми випробувань Бернулі. Записати формулу Бернулі.Навести приклади застосування.

Якщо усі випробовувань проводити в однакових умовах і імовірність появи події А в усіх випробовуваннях однакова, та не залежить від появи або не появи А в інших випробовуваннях, то таку послідовність незалежних випробовувань називають схемою Бернулі. Pn(M)=Cnm*mp*q(n-m)формула Бернулі. Вона дозволяє знаходити імовірність появи події А M разів при n випробовуваннях, які утворюють схему Бернулі.

18. Граничні теореми у схемі випробувань Бернулі. А)Пуассона. Б) Локальну та інтегральну Лапласа.

А)Пуассона: якщо при проведенні випробувань за схемою Бернулі число випробовувань достатньо велике(прямує до нескінченності) а імовірність р достатньо мала(прямує до нуля) то з формули бернулі можна вивести формулу Пуассона.P(x)=(xk/k)*e-£. £=m*p. Б)Локальна Лапласа:Якщо при проведенні випробовувань за схемою Бернулі число випробовувань достатньо велике, а імовірність суттєво відрізняється від 0 та 1, то має місце лок лапласа.Pn(k)=(1/√npq)*φ(x). X=k-np\коріньnpq Приклад:імовірність помилки в митній справі=0,2Знайти імовірністьт того що в 400 оформленнях помилок буде 100.Р=0,2. n=400 k=100: √npq=√400*0,2*0,8=8, x'=(100-400-0,2)/8=2,5. φ(2,5)=0,175, Р400100 =0,0175/8. в)Інтегральна Лапласа:Я якщо при проведенні випробувань за схемою Бернулі число випробовувань достатньо велике(прямує до нескінченності) а імовірність суттєво відрізняється від 0 та 1,То імовірність того, що наша подія настане: Pn(k1<=k0<=k2)=Ф(x2)- Ф(x1)=(k1-np)/ √npq. Ф(x)=∫0x φ(t)dt-інтегральна лапласа. φ(t)-локальна лапласа.

19.Записати формули для обчислення в схемі бернулі: а)імовірності відхилення частоти від імовірності б)найбільш імовірного числа появи подій

Нехай проводиться випробовування за схемою Бернулі і виконуються умови теореми лапласа про значення р та n треба знайти хочаб наближено імовірність того,Що відхилення (частість)(відносна частота)m/n від постійної імовірності р не перевищує заданого числа ε>0. за допомогою нерівності|m/n-p|<= ε а також користуючись інтегральною теоремою лапласа отримаємо p={|k/n-p|< ε }= Ф(-ε√n/pq)+ Ф(-ε√n/pq)=2 Ф(-ε√n/pq). За формулою Бернулі: Pn(k0)=n!/(k0(n-k0))!*pk0q(n-k0) 1)якщо число(n+1)p натуральне, то згачень 2. а)k0'=(n+1)p або б) k0'=(n+1)p-1 2)Припустимо (n+1) p-дробове число, тоді k0=цілій частині цього числа k0=[ (n+1)p]

20. Дати означення випадкової величини (в.В.), дискретної (д.В.В.) та неперервної випадкої величини (н.В.В.). Навести приклади.

Випадковою величиною називають таку величину, яка в наслідок випробування, може прийняти лише одне числове значення, заздалегідь невідоме і обумовлене випадковими причинами.

Випадкові величини бувають дискретними та непевними. Дискретною випадковою величиною (ДВВ) називають таку величину, яка може приймати відокремлені ізольовані одне від одного числові значення (їх можна пронумерувати) з відповідними ймовірностями. Наприклад, кількість влучень у мішень при трьох пострілах буде Х: 0, 1, 2, 3. Отже, Х може приймати чотири ізольовані числові значення з різними ймовірностями. Тому Х — дискретна випадкова величина. Неперервною випадковою величиною (НВВ) називають величину, яка може приймати будь-яке числове значення з деякого скінченного або нескінченного інтервалу (a, b). Кількість можливих значень такої величини є нескінченна. Наприклад, величина похибки, яка може бути при вимірюванні відстані; час безвідмовної роботи приладу; зріст людини; розміри деталі, яку виготовляє станок-автомат.