- •1.Що є предметом теорії імовірності?
- •2.Дати означення підмножини скінченної (нескінченної), зліченої і незліченої. Навести приклад.
- •3. Дати означення об’єднаня суми, різниці та добутку множин. Навести приклади.
- •4.Дати означення сполучення та розміщення. Записати формулу для обчислення числа ціх сполук. Навести приклади
- •5. Записати формулу, що пов’язує число переставлень, сполучень та розміщень. Сформулювати правила суми та добутку. Навести приклади.
- •7. Дати означення сумісних, несумісних та попарно несумісних подій. Навести приклади.
- •8. Дати означення суми (об’єднання), різниці та добутку (перетину) подій, протилежної події, повної групи подій. Навести приклади.
- •9. Як випадкова подія виражається через елементарні наслідки випадкового експерименту? Які елементарні наслідки називаються такими, що сприяють появі даної події? Навести приклади.
- •10. Сформулювати класичне визначення імовірності події і записати відповідну формулу. Навести приклади.
- •11.(Геометричне визначення).
- •12. Дати означення частоти та відносної частоти події.
- •13. Сформулювати теореми: а) про імовірність суми двох подій; б) про імовірність суми двох несумісних подій; в) про імовірність суми декількох попарно несумісних подій. Навести приклади.
- •14. Дати означення незалежності і залежності двох подій, умовної імовірності події, попарної незалежності декількох подій, незалежності у сукупності декількох подій. Навести приклади.
- •15. Записати формулу для обчислення імовірності хочаб однієї з декількох подій, незалежних у сукуупності.Пояснити букви, навести приклади.
- •16. Записати формули: а) повної імовірності; б) Байеса. Пояснити зміст позначень. Навести приклади.
- •17. Навести умови схеми випробувань Бернулі. Записати формулу Бернулі.Навести приклади застосування.
- •18. Граничні теореми у схемі випробувань Бернулі. А)Пуассона. Б) Локальну та інтегральну Лапласа.
- •19.Записати формули для обчислення в схемі бернулі: а)імовірності відхилення частоти від імовірності б)найбільш імовірного числа появи подій
- •20. Дати означення випадкової величини (в.В.), дискретної (д.В.В.) та неперервної випадкої величини (н.В.В.). Навести приклади.
- •21. Дати означення закону та багатокутника розподілу ймовірностей д.В.В. Навести приклади.
- •22. Дати означення інтегральної та диференціальної функції розподілу н.В.В. Вказати їх основні властивості. Навести приклади.
- •24. Пояснити, що характеризують: а) математичне сподівання; б) дисперсія та середнє квадратичне відхилення; в) асиметрія; г) ексцес; д) мода; е) медіана.
- •25. Довести основні властивості математичного сподівання і дисперсії.
- •26. Записати основні закони розподілу д.В.В.: а) біноміальний ; б)Пуассона; в)геометричний. Пояснити зміст букв. Навести приклади д.В.В., розподілених за цими законами.
- •27. Записати основні закони розподілу н.В.В.: а) рівномірний; б) нормальний; в) показниковий. Пояснити зміст букв. Навести приклади н.В.В., розподілених за цими законами.
- •28. Пояснити зміст терміну «закон великих чисел». Довести нерівність Чебишова в усіх формах. Навести приклади її застосування.
- •29 Сформулювати основні теореми закону великих чисел: а) Бернуллі; б) Чебишова; Пояснити значення цих теорем для практики.
- •30. Сформулювати центральну граничну теорему у формі Леві-Ліндеберга в усіх видах. Довести інтегральну теорему Мавра-Лапласа як окремий випадок попередньої теореми.
- •31.Дати означення системі випадкових величин. Навести приклади. Дати означення закону розподілу дискретної двовимірної випадкової величини. Навести приклади.
- •32 Дати означення ф-ціїї розподілу двв. Основні властивості ф-ції розподілу, її геометричний зміст.
- •33 Дати означеня щільностей ймовірностей двв. Основні властивості, імовірнісний зміст.
- •34 Записати ф-ли для обчислення ймовірностей попадання випадкової точки в довільну двомірну область d; в прямокутник.
- •35 Означення залежності (незалежності) випадкових величин, що входять в с-му вв. Теореми про необхідну та достатню умови незалежності.
- •39. Навести основні властивості кореляційного моменту μxy та коефіцієнту кореляції rxy
- •40. Дати означення корельованості (некорельованості) двох в.В. Пояснити різнцю і зв’язок між корельованістю (некорельованістю) і залежністю двох в.В.
- •41 Вивести рівняння лінійної середньоквадратичної регресії y на х(х на y). Пояснити зміст позначень.Дати означення коефіцієнту регресії , залишкової дисперсії та пояснити, що вони характеризують.
- •42. Сформулювати теорему про корельованість складових нормально розподіленої двовимірної в.В.
- •47 Дати означення а) генеральної та вибіркової сукупності б) обсягу вибірки в) повторної, безповоротної та репрезентативної вибірок
- •48 Дати означення естатистичної (емпіричної) функції розподілу та сформулювати її основні властивості
- •49 Дати означення кумулятивних частоти та відносної частоти
- •50 Дати означення полігону та гістограми
- •51 Дати означення точкової статистичної оцінки параметру розподілу генеральної сукупності
- •54 Дати означення вибіркових: а)моди і медіани; б) початкового та центрального моментів; в) коефіцієнтів асиметрії та ексцесу. Навести приклади знаходження (обчислення).
- •55 Дати означення: а) інтервальної оцінки параметра генеральної сукупності, її точності та надійності; б) надійного інтервалу. Навести приклади.
- •58 Записати формулу для обчислення кінців надійного інтервалу для оцінки середнього квадратичного відхилення нормальної розділеної генеральної сукупності
- •59 Дати означення емпіричної та теоретичної частот
- •60Дати озн функціональної, стохастичної, кореляційної залежності, умовного середнього, вибіркових рівняння та лінії регресії.
- •62 Записати формулу для обч вибіркової кореляції кінців надійного інтервалу для інтерн. Оцінки коеф кореляції нормально розподіленої ген сукупності
- •63 Дати означення статистичної гіпотези, нульової та альтернативної гіпотез
- •64 Дати означення рівня значущості та потужності статистичного критерію
- •65 Дати означення рівня значушості та потужності статистичного критерію
- •66 Навести приклади перевірки гіпотез про: рівність генеральних дисперсій двох нормально розподілених генеральних сукупностей
17. Навести умови схеми випробувань Бернулі. Записати формулу Бернулі.Навести приклади застосування.
Якщо усі випробовувань проводити в однакових умовах і імовірність появи події А в усіх випробовуваннях однакова, та не залежить від появи або не появи А в інших випробовуваннях, то таку послідовність незалежних випробовувань називають схемою Бернулі. Pn(M)=Cnm*mp*q(n-m)формула Бернулі. Вона дозволяє знаходити імовірність появи події А M разів при n випробовуваннях, які утворюють схему Бернулі.
18. Граничні теореми у схемі випробувань Бернулі. А)Пуассона. Б) Локальну та інтегральну Лапласа.
А)Пуассона: якщо при проведенні випробувань за схемою Бернулі число випробовувань достатньо велике(прямує до нескінченності) а імовірність р достатньо мала(прямує до нуля) то з формули бернулі можна вивести формулу Пуассона.P(x)=(xk/k)*e-£. £=m*p. Б)Локальна Лапласа:Якщо при проведенні випробовувань за схемою Бернулі число випробовувань достатньо велике, а імовірність суттєво відрізняється від 0 та 1, то має місце лок лапласа.Pn(k)=(1/√npq)*φ(x). X=k-np\коріньnpq Приклад:імовірність помилки в митній справі=0,2Знайти імовірністьт того що в 400 оформленнях помилок буде 100.Р=0,2. n=400 k=100: √npq=√400*0,2*0,8=8, x'=(100-400-0,2)/8=2,5. φ(2,5)=0,175, Р400100 =0,0175/8. в)Інтегральна Лапласа:Я якщо при проведенні випробувань за схемою Бернулі число випробовувань достатньо велике(прямує до нескінченності) а імовірність суттєво відрізняється від 0 та 1,То імовірність того, що наша подія настане: Pn(k1<=k0<=k2)=Ф(x2)- Ф(x1)=(k1-np)/ √npq. Ф(x)=∫0x φ(t)dt-інтегральна лапласа. φ(t)-локальна лапласа.
19.Записати формули для обчислення в схемі бернулі: а)імовірності відхилення частоти від імовірності б)найбільш імовірного числа появи подій
Нехай проводиться випробовування за схемою Бернулі і виконуються умови теореми лапласа про значення р та n треба знайти хочаб наближено імовірність того,Що відхилення (частість)(відносна частота)m/n від постійної імовірності р не перевищує заданого числа ε>0. за допомогою нерівності|m/n-p|<= ε а також користуючись інтегральною теоремою лапласа отримаємо p={|k/n-p|< ε }= Ф(-ε√n/pq)+ Ф(-ε√n/pq)=2 Ф(-ε√n/pq). За формулою Бернулі: Pn(k0)=n!/(k0(n-k0))!*pk0q(n-k0) 1)якщо число(n+1)p натуральне, то згачень 2. а)k0'=(n+1)p або б) k0'=(n+1)p-1 2)Припустимо (n+1) p-дробове число, тоді k0=цілій частині цього числа k0=[ (n+1)p]
20. Дати означення випадкової величини (в.В.), дискретної (д.В.В.) та неперервної випадкої величини (н.В.В.). Навести приклади.
Випадковою величиною називають таку величину, яка в наслідок випробування, може прийняти лише одне числове значення, заздалегідь невідоме і обумовлене випадковими причинами.
Випадкові величини бувають дискретними та непевними. Дискретною випадковою величиною (ДВВ) називають таку величину, яка може приймати відокремлені ізольовані одне від одного числові значення (їх можна пронумерувати) з відповідними ймовірностями. Наприклад, кількість влучень у мішень при трьох пострілах буде Х: 0, 1, 2, 3. Отже, Х може приймати чотири ізольовані числові значення з різними ймовірностями. Тому Х — дискретна випадкова величина. Неперервною випадковою величиною (НВВ) називають величину, яка може приймати будь-яке числове значення з деякого скінченного або нескінченного інтервалу (a, b). Кількість можливих значень такої величини є нескінченна. Наприклад, величина похибки, яка може бути при вимірюванні відстані; час безвідмовної роботи приладу; зріст людини; розміри деталі, яку виготовляє станок-автомат.
