Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KCE_Letuchka_2.doc
Скачиваний:
1
Добавлен:
19.11.2019
Размер:
255.49 Кб
Скачать

28. Что используют настоящее время в качестве ядерного топлива для атомных станций? Каковы достоинства и недостатки такого топлива?

Во время деления тяжёлых ядер урана U235 происходит реакция с выделением огромного количества тепла. Для того, что реакция произошла, в ядро атома попал нейтрон.

29. Какими преимуществами и недостатками обладают реакторы атомных станций рбмк (реактор большой мощности канальный, на тепловых нейтронах, водно-графитовый)?

Реактор Большой Мощности Канальный (РБМК) — серия энергетических ядерных реакторов, разработанных в Советском Союзе. Реактор РБМК канальный, гетерогенный, графито-водный, кипящего типа, на тепловых нейтронах. Теплоноситель — кипящая вода.

Достоинства

Пониженное, по сравнению с корпусными ВВЭР, давление воды в первом контуре;

Благодаря канальной конструкции отсутствует дорогостоящий корпус;

Нет дорогостоящих и сложных парогенераторов;

Нет принципиальных ограничений на размер и форму активной зоны (например, она может быть в форме параллелепипеда, как в проектах РБМКП);

Независимый контур системы управления и защиты (СУЗ);

Широкие возможности осуществления регулярного контроля состояния узлов активной зоны (например, труб технологических каналов) без необходимости остановки реактора, и также

высокая ремонтопригодность;

Малое «паразитное» поглощение нейтронов в активной зоне (более благоприятный нейтронный баланс), как следствие — более полное использование ядерного топлива;

Более легкое (по сравнению с корпусными ВВЭР) протекание аварий, вызванных разгерметизацией циркуляционного контура, а также переходных режимов, вызванных отказами оборудования;

Возможность формировать оптимальные нейтронно-физические свойства активной зоны реактора (коэффициенты реактивности) на стадии проектирования;

Незначительные коэффициенты реактивности по плотности теплоносителя (современный РБМК);

Замена топлива без остановки реактора благодаря независимости каналов друг от друга (в частности, повышает коэффициент использования установленной мощности);

Возможность наработки радионуклидов технического и медицинского назначения, а также радиационного легирования различных материалов;

Отсутствие (по сравнению с корпусными ВВЭР) необходимости применения борного регулирования;

Более равномерное и глубокое (по сравнению с корпусными ВВЭР) выгорание ядерного топлива;

Возможность работы реактора с низким ОЗР — оперативным запасом реактивности (современные проекты, например, строящийся пятый энергоблок Курской АЭС);

Более дешёвое топливо из-за более низкой степени обогащения, хотя загрузка топливом значительно выше (в общем топливном цикле используют переработку отработанного топлива от ВВЭР);

Поканальное регулирование расходов теплоносителя через каналы, позволяющее контролировать теплотехническую надежность активной зоны;

Тепловая инертность активной зоны, существенно увеличивающая запасы до повреждения топлива во время возможных аварий;

Независимость петель контура охлаждения реактора (в РБМК — 2 петли), что позволяет локализовать аварии в одной петле.

Недостатки

Большое количество трубопроводов и различных вспомогательных подсистем требует наличия большого количества высококвалифицированного персонала;

Необходимость проведения поканального регулирования расходов, что может повлечь за собой аварии, связанные с прекращением расхода теплоносителя через канал;

Более высокая нагрузка на оперативный персонал по сравнению с ВВЭР, связанная с большим количеством узлов (например, запорно-регулирующей арматуры);

Бо́льшее количество активированных конструкционных материалов из-за больших размеров АЗ и металлоёмкости РБМК, остающихся после вывода из эксплуатации и требующих утилизации.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]