Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ultrasound.doc
Скачиваний:
83
Добавлен:
19.11.2019
Размер:
7.98 Mб
Скачать

Механизм действия ультразвука на вещество и биологические ткани

  1. Механическое действие

  2. Тепловое действие

  3. Химическое действие

Виды взаимодействия ультразвука с веществом

При распространении УЗ в реальных средах происходит взаимодействие волны со средой. Среда определяет распространение и ослабление волны. Волна воздействует на саму среду.

Ультразвук, используемый в диагностике при уровнях интенсивности менее 0,1 Вт/см2, практически не оказывает вредного воздействия на биологические объекты. Однако при более высоких уровнях для высокочастотного ультразвука в жидких неоднородных средах ультразвук оказывает влияние на биологические среды обусловленное механическим, тепловым и химическим действием.

Большинство первичных физико-химических реакций в живом организме при действии УЗ локальны. Однако эти воздействия могут вызывать реакцию организма в целом.

Рассмотрим механическое, тепловое и химическое действие УЗ на биологические объекты.

1. Механическое действие

При воздействии УЗ на биологические объекты, частицы среды совершают интенсивные колебательные движения, при этом, например, в жидкостях (мягких тканях) при интенсивности УЗ 1 Вт/см2 на частоте 1МГц амплитуда смещений составляет 0,2 мкм, амплитуда колебательной скорости 12см/с.

Возникающие при этом смещения стенок клеток приближаются к пороговым смещениям, обуславливающим биоэлектрическую активность механорецепторов. На частоте 10 МГц пороговые смещения элементов клеток будут происходить уже при интенсивностях 0,1 Вт/см2. Т.о. живая клетка может испытывать значительные воздействия уже при довольно низких интенсивностях высокочастотного УЗ.

Акустические течения

Явления, сопровождающие распространение УЗ в жидких средах связаны с возникновением акустических течений. Изучено три типа акустических течений.

Первый тип, это мелкомасштабные течения, возникающие на поверхности раздела фаз в пограничном слое. Они имеют вихреобразный характер.

Второй тип акустических потоков возникает вне пограничного слоя.

Третий тип - это течения направленные от излучателя по направлению уз луча, при этом создаётся динамическое давление на объекты находящиеся на пути течения.

В плоской волне, в однородных средах, при низких уровнях интенсивности УЗ, перемещения частиц среды ограничиваются колебательными движениями около положения равновесия. Для неоднородных сред, каковыми являются биологические среды, к колебательным движениям добавляются движения поступательные, что вызывает т.н. микропотоки или акустический ветер. Чем выше уровни интенсивности УЗ, тем сильнее эти эффекты. Уже при интенсивностях 0,1 - 1 Вт/см2 в клетках и межклеточном пространстве начинают возникать сильные микропотоки.

Акустические течения и микропотоки, способны порождать как вне, так и внутри клеток ускорение диффузионных процессов, а также вихревые движения, которые могут вызывать разрыв клеточных мембран, деформацию и перемещения внутриклеточных структур и цитоплазмы.

Деформация среды.

Распространение ультразвуковой волны в среде связано с механическими деформациями среды. Деформации происходят в результате последовательного сгущения и разряжения частиц среды, что создаёт переменное давление в среде.

Кавитация.

В жидких средах, при действии ультразвука, амплитуда переменного давления изменяется в зависимости от плотности среды, скорости распространения ультразвуковых волн и частоты колебания частиц среды. В момент растяжения, при понижении давления, происходит нарушение сплошности жидкой среды - жидкость может разорваться, при этом в жидкости могут образоваться микрополости (каверны), заполненные парами жидкости, после чего происходит захлопывание пузырька и возникает ударная волна с большими переменными давлениями. Это явление называется кавитацией.

Образование и последующее распространение ударных волн, могут приводить к разрывам и повреждениям структуры биологических тканей.

Для возникновения кавитации необходимо достижение определенного значения интенсивности ультразвука (порогового значения). Величина порогового значения зависит от частоты ультразвука и сил сцепления в жидкости. Растяжение, которое могут выдержать жидкости, зависит от примесей в них (наличие газов и газовых пузырьков). Кавитация в тканях под действием нефокусированного УЗ может наблюдаться при интенсивностях более 0,6 Вт/см2 на частоте 1МГц. При образовании каверн средняя плотность жидкости понижается, а скорость колебательного движения частиц среды увеличивается. Так как для образования полостей требуется некоторое время, то при очень высоких частотах (свыше 5 МГц) кавитация не наблюдается.

Кавитационные микрополости, образующиеся в среде при ультразвуковом воздействии, существуют короткое время. Пониженное давление в каждой точке среды существует лишь на протяжении полупериода колебаний, затем сменяется повышенным давлением, что приводит к быстрому захлопыванию микрополостей. В результате увеличения колебательного движения частиц среды, а также захлопывания каверн, в небольших объемах выделяется большая тепловая энергия. Поглощение энергии ультразвука вызывает повышение температуры среды.

Тепловой эффект действия ультразвука зависит от его интенсивности и длительности.

Кавитация, также, сопровождается образованием химически активных частиц, которые вступают в реакцию с биомакромолекулами, существенно меняя их свойства.

Кавитация может сопровождаться свечением – электромагнитным излучением возбужденных молекул в фазе образования ударной волны.

Действие на мембраны

Механические воздействия УЗ волн на биологические системы могут изменять вязкость цитоплазмы, нарушать градиенты концентрации различных веществ в непосредственной близости от клеточных мембран и даже нарушить целостность клеточных мембран. Во всех случаях в результате воздействия механических возмущений на клетку возникает изменение условий транспортировки молекул и ионов через клеточную мембрану.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]