Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УВАТ пособие.doc
Скачиваний:
526
Добавлен:
18.11.2019
Размер:
22.97 Mб
Скачать

Глава 3. Система питания двигателей.

3.1. Системы питания двигателей внутреннего сгорания.

3.1.1. Процесс смесеобразования и состав горючей смеси.

Поиски оптимального топлива для «искрового» двигателя начались за несколько лет до официального рождения автомобиля в 1886 году. Существовавшие на тот момент стационарные ДВС работали главным образом на светильном газе, смеси метана и водорода, образующейся при коксовании угля. Светильный газ был недешев и к тому же неудобен в хранении и транспортировке.

Одним из первых стал использовать бензин в качестве моторного топлива (ранее он продавался в маленьких бутылочках в аптеках как средство от вшей) не кто иной, как Готлиб Даймлер. Изобретением карбюратора, позволившего переводить жидкое топливо в газообразное состояние и смешивать его с воздухом, он решил основную проблему того времени, и вскоре примеру Даймлера последовали другие. «Средство от вшей» теперь все чаще можно было встретить в обычных магазинах, залитым в большие канистры, а вскоре бензин появился на специальных заправочных станциях, которые стали непременным атрибутом каждого большого города.

Октановое число. Для определения ОЧ бензина принято использовать два метода: моторный и исследовательский. ОЧ бензина определяемое моторным методом обозначают индексом "А", соответственно ОЧ исследовательского метода обозначают индексом "Аи". А определяют ОЧ бензина этими двумя методиками следующим образом:    1. Моторный. Для этого метода используется специальный одноцилиндровый двигатель с головкой цилиндра специальной конструкции, позволяющей изменять на ходу степень сжатия. Испытуемое топливо наливают в двигатель (грубо говоря) и во время работы доводят степень сжатия до тех пор пока не начнется детонация. По таблицам смотрят значения и определяют марку топлива.    2. Исследовательский. Метод заключается в исследовании топлива по отношению к эталонному. В качестве эталонов для определения октанового числа используют два углеводорода, один из которых - изооктан - обладает очень высокими антидетонационными свойствами, то есть горит, а не взрывается. Другой - Н-гептан - наоборот. Октановое число изооктана принято считать равным 100, а Н-гептана - равным нулю. Если эти два соединения смешать в пропорции 92 к 8, то получится горючее с октановым числом, равным 92 - это эталон 92-го бензина. По этому эталону и определяются антидетонационные свойства бензина, претендующего на звание "девяносто второго". Промежуточные нефтяные дистилляты, кипящие при температурах выше, чем керосин, но ниже, чем смазочные масла, представляют собой горючее для средне- и высокоскоростных дизельных двигателей. Цетановое число. Дизельные топлива оцениваются их цетановым числом – это реальное измерение легкости воспламенения под действием температуры и давления, а не способности горения. При этом топливо сравнивается со смесью цетана – парафинового углеводорода с 16-ю атомами углерода, который легко воспламеняется под давлением, и a-метилнафталина, который не возгорается. Процент цетана в смеси, показывающий ту же воспламеняемость, что и дизельное топливо в стандартных условиях испытания, называется цетановым числом. Парафиновые топлива более подходят для дизельных двигателей, поскольку они легко воспламеняются под давлением без дополнительной искры зажигания. Однако в связи с возрастающей потребностью в дистиллятах прямой перегонки для других целей, кроме получения дизельного топлива, увеличивается использование тяжелых дистиллятов с более низким цетановым числом, получаемых при каталитическом крекинге. Повышение надежности воспламенения низкокачественных дизельных топлив, улучшение воспламеняемости, более известное как увеличение цетанового числа, достигается добавлением специальных масел. Они включают такие компоненты, как органические оксиды и пероксиды. Небольшие добавки амилнитрата удовлетворительно улучшают качество топлив.

Цетановое число – основной показатель воспламеняемости дизельного топлива. Это число характеризует способность топлива к воспламенению и определяет период задержки, то есть, промежуток времени от впрыска топлива в цилиндр до начала его горения. Оно влияет на запуск двигателя, жесткость работы, расход топлива и дымность отработавших газов. Чем выше цетановое число, тем лучше способность топлива к воспламенению, тем короче промежуток времени между началом впрыска и воспламенением и как следствие, более спокойное и плавное горение дизельного топлива, которое определяет высокие мощностные и экономические показатели работы двигателя.

Цетановый индекс – расчетное цетановое число до добавки в топливо цетаноповышающей присадки. Поскольку присадки по разному влияют на общий химический и физический состав топлива, то во избежание передозировки цетаноповышающей присадки, необходимо поддерживать минимальную разницу между цетановым числом и цетановым индексом. Цетановый индекс фактический регламентирует качество топлива на промежуточном цикле производства.

Фракционный состав – наряду с цетановым числом является одним из наиболее важных показателей качества дизельного топлива. Он оказывает влияние на расход топлива, дымность выпуска, легкость пуска двигателя, износ трущихся деталей, нагарообразование и закоксовывание форсунок, пригорание поршневых колец. Температура выкипания 50% топлива (средняя испаряемость) характеризует рабочие фракции топлива, которые обеспечивают запуск, прогрев, приёмистость и устойчивость работы двигателя, а также плавность перехода с одного режима на другой. Полнота испарения топлива в двигателе характеризуется температурой выкипания 95% топлива. При слишком высоких значениях этой температуры топливо не успевает полностью испаряться и оседает в виде капель и пленки, которые, стекая по стенкам цилиндра, приводят к повышенному нагарообразованию, разжижению масла и форсированному износу.

Состав горючей части топлива. Углерод С – основная горючая часть топлива. С увеличением его содержания тепловая ценность топлива повышается. В различных видах топлива содержится от 50 до 70 % С.

Водород Н – вторая по значимости составляющая горючей части топлива. В сравнении с углеродом Н содержится в топливе меньше (до 25 %), а теплоты при сгорании выделяет в четыре раза больше.

Кислород О – не горит и не выделяет теплоты. Его содержание в зависимости от вида топлива составляет 0,5 … 45 %.

Азот N – не горит. Содержание в твердом и жидком топливе составляет 0,5…1,5 %.

Сера S – при ее сгорании выделяется определенное количество теплоты. Но сам продукт сгорания является весьма нежелательной частью топлива, ибо сернистый SO2 и серный SO3 ангидриды вызывают сильную газовую или жидкостную коррозию металлических поверхностей. Содержание серы в твердом топливе составляет от долей % до 8 %, а в нефти от 0,1 до 4 %.

Зола А – представляет собой не горючий твердый компонент, является нежелательной и даже вредной примесью, так как ее присутствие усиливает абразивный износ, усложняет эксплуатацию котельных установок из за оседания ее на стенках. У топлива с высоким содержанием золы понижена теплота сгорания и температура воспламеняемости.

Влага W – весьма нежелательная примесь, так как, во первых, часть теплоты забирается на ее испарение, в результате чего снижается теплота и температура сгорания, а во вторых влага вызывает коррозию металла.

Смесеобразование в карбюраторных двигателях. В таких дви­гателях горючая смесь требуемого состава приготовляется из топ­лива и воздуха в специальном устройстве — карбюраторе, а затем подается в нужном количестве непосредственно в цилиндры дви­гателя.

Для полного сгорания бензина необходимо определенное коли­чество кислорода, находящегося в воздухе. Быстрое сгорание воз­можно при распылении и смешивании его с воздухом.

Для полного сгорания 1 г бензина необходимо 15 г воздуха. Смесь в таком соотношении бензина и воздуха называют нормальной. При избытке воздуха смесь называют обедненной (содержит 15... 17 г воздуха на 1 г бензина) или бедной (свыше 17 г воздуха). Смесь при соотношении бензина и воздуха 1:21 и более не воспламеняется.

При недостатке воздуха смесь называют обогащенной (13... 15 г воздуха) или богатой (менее 13 г воздуха). Если на 1 г бензина при­ходится менее 5 г воздуха, то смесь не воспламеняется.

Карбюраторный двигатель имеет следующие режимы работы: пуск, холостой ход, средние нагрузки, полные нагрузки, резкий переход на полные нагрузки.

При пуске холодного двигателя необходима богатая горячая смесь (а от 0,3 до 0,6), так как частота вращения коленчатого вала мала, топливо плохо испаряется, а часть его конденсируется на холодных стенках цилиндра. Это приводит к тому, что в цилиндры двигателя попадает незначительное количество пусковых фракций, обеспечивающих гарантированный пуск двигателя.

Работа двигателя на холостом ходу и при малых нагрузках возможна при обогащенной смеси (а от 0,7 до 0,9). Горючая смесь поступает в цилиндры двигателя и смешивается со значительным количеством остаточных отработавших газов, поэтому обогащение смеси улучшает ее воспламеняемость и способствует устойчивой работе двигателя без нагрузки.

Средние нагрузки — наибольшая часть работы двигателя в процессе эксплуатации, поэтому на этом этапе необходима обедненная горючая смесь (а от 1,05 до 1,1), что способствует наилучшей экономичности двигателя.

Полная нагрузка обеспечивается подачей в цилиндры двигателя обогащенной смеси (а от 0,85 до 0,9). Этот режим необходим при разгоне автомобиля, движении автомобиля с максимальной скоростью, преодолении подъемов или тяжелых участков дороги.

При резком переходе на режим полной нагрузки (резкое открытие дроссельной заслонки) возможно обеднение горючей смеси — карбюратор должен иметь устройство, предотвращающее это.

Таким образом, в процессе работы двигателя карбюратор должен изменять состав горючей смеси в зависимости от режима работы двигателя.

Процесс приготовления горючей смеси из мелко распыленного топлива и воздуха, происходящий вне цилиндров, называется карбюрацией, а прибор, в котором происходит приготовление горючей смеси определенного состава в зависимости от режима работы двигателя, называется карбюратором.

Дизельное топливо. Фракции продуктов переработки нефти, выкипающие до 390 «С, служат основой для производства дизельного топлива, получившего название от типа двигателя, в котором оно используется. Этот вид топлива предназначен для высокооборотных дизелей. Смесь дизельного топлива с остаточными продуктами (до 80 %) прямой перегонки или крекинга нефти называют тяжелым дизельным топливом. Тяжелое дизельное топливо предназначено для малооборотных и среднеоборотных дизелей. В зависимости от климатических условий и времени года применяется дизельное топливо различных марок:

  • Л (летнее),

  • 3 (зимнее),

  • А (арктическое).

В дизеле воспламенение топлива происходит самопроизвольно без внешнего искрового устройства и с минимальной задержкой с момента его впрыска в горячую камеру сгорания. Важнейшим показателем дизельного топлива является воспламеняемость. Топливо, обладающее большей способностью к воспламенению, обеспечивает более мягкое протекание процесса сгорания без резкого повышения давления и стуков в цилиндре двигателя. Таким топливом является цетан, воспламеняемость которого принята за 100 единиц. Воспламеняемость альфаметилнафталина принята за 0. Воспламеняемость дизельных топлив оценивают цетановым числом, которое равно объемному содержанию цетана в такой его смеси с альфаметил-нафталином, которая при стандартных условиях испытания имеет одинаковую воспламеняемость с данным топливом. В современных дизелях применяют топливо с цетановым числом 40—55.

Смесеобразование в дизелях.

В основе своей дизельный мотор, как и бензиновый, имеет все атрибуты двигателя внутреннего сгорания. Главное и существенное отличие кроется в изобретении, открытом и 1892 году Рудольфом Дизелем.

Он придумал внутреннее смесеобразование и воспламенение горючей смеси от сжатия. В зависимости от конструкции двигателя и типа смесеобразования степень сжатия для дизелей составляет 16-24 единиц. Эта величина значительно выше, чем у бензинового мотора, у которого она равна 7-13. Воздух при этом сжимается до 30-50 бар, а его температура достигает 700-900 °С. Перед завершением такта сжатия в камеру сгорания под высоким давлением (120-2 000 бар) впрыскивается топливо. Распыляясь по объему камеры сгорания, заполненной нагретым до высокой температуры воздухом, происходит его воспламенение. Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на обедненных смесях, что обуславливает высокую экономичность дизельного двигателя, который помимо этого обладает и более высокими, нежели у бензинового мотора, экологическими показателями, так как при сгорании дизельного топлива выбросы оксида углерода ничтожны.

Смесеобразование происходит за очень короткий промежуток времени, когда поршень находится вблизи ВМТ. К началу подачи топлива — в конце такта сжатия давление в цилиндре составляет примерно 3,5—4,5 МПа, а температура — 800—900 К. Смесеобразование представляет собой процесс испарения мелко распыленного топлива и перемешивание его паров с воздухом. Каждая частица топлива должна войти в соприкосновение с воздухом как можно скорее, чтобы выделение теплоты произошло в начале хода расширения. Для улучшения смесеобразования и повышения однородности смеси коэффициент избытка воздуха составляет от 1,4 до 1,7. Равномерное распределение топлива по объему камеры сгорания осуществляется за счет кинематических энергий распыленного топлива и движущегося воздуха, определяемых формой камеры сгорания и скоростью движения поршня. В современных дизелях находит применение объемное, объемно-пленочное, пленочное, вихрекамерное и предкамерное смесеобразование. Способ смесеобразования обусловлен формой камеры сгорания, которая в сочетании с топливоподающей аппаратурой определяет условия процессов смесеобразования и сгорания. Двигатель с непосредственным впрыском топлива обеспечивает наиболее экономичный рабочий цикл и хорошие пусковые свойства двигателя.

Для получения горючей сме­си, способной быстро и полностью сгорать, необходимо, чтобы топ­ливо было распылено на возможно более мелкие частицы и чтобы каждая частица имела вокруг себя достаточное для полного сгора­ния количество воздуха. Для этого топливо в цилиндр впрыскива­ется форсункой под давлением, в несколько раз превышающим дав­ление воздуха при такте сжатия в камере сгорания. В дизелях при­меняют неразделенные камеры сгора­ния (рис. 1). Они представляют собой единый объем, ограниченный днищем поршня 3 и поверхностями головки и стенок цилиндров. Для лучшего пере­мешивания топлива с воздухом форму неразделенной камеры сгорания при­спосабливают к форме топливных факелов. Углубление 1, выполненное в днище поршня, способствует созда­нию вихревого движения воздуха.

Рис. 14 Камера сгорания ди­зеля Д-245:

1— фигурное углубление; 2— форсунка; 3—поршень

Мелкораспыленное топливо впрыс­кивается из форсунки через несколь­ко отверстий, направленных в опреде­ленные места углубления.

Чтобы топливо полностью сгорало и у дизеля были наилучшие мощностные и экономические показатели, топливо должно впрыс­киваться в цилиндр до прихода поршня в ВМТ.

Угол, на который кривошип коленчатого вала не доходит до ВМТ в момент начала впрыскивания топлива, называют углом опереже­ния впрыскивания топлива. Чтобы форсунка впрыскивала топливо с требуемым опережением, топливный насос должен подавать топ­ливо еще раньше, чтобы иметь некоторое время на нагнетание топ­лива от наноса к форсунке. Угол, на который кривошип коленчато­го вала не доходит до ВМТ в момент начала подачи топлива из топ­ливного насоса, называют углом опережения подачи топлива.