Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по теоретической механике.doc
Скачиваний:
83
Добавлен:
02.05.2014
Размер:
2.06 Mб
Скачать

Кинематика

Кинематика – раздел механики, в котором изучаются движение материальных тел с геометрической точки зрения, без учета массы и действующих на них сил. Способы задания движения точки: 1) естественный, 2) координатный, 3) векторный. Траектория точки – непрерывная кривая, которую описывает точка при своем движении.

Естественный сп. указывается траектория точки, закон ее движения по этой траектории, начало и направление отсчета дуговой координаты: s=f(t) – закон движения точки. При прямолинейном движении: х=f(t).

Координатный сп. положение точки в пространстве определяется тремя координатами, изменения которых определяют закон движения точки: x=f1(t), y=f2(t), z=f3(t).

Если движение в плоскости, то два уравнения движения. Уравнения движения описывают уравнение траектории в параметрической форме. Исключив из уравнений параметр t, получаем уравнение траектории в обычном виде: f(x,y)=0 (для плоск-ти).

Векторный сп. положение точки определяется ее радиус-вектором , проведенным из какого-либо центра. Кривая, которая вычерчивается концом какого-либо вектора, назыв. годографом этого вектора. Т.е. траектория – годограф радиус-вектора. Связь между координатным и векторным способами: ,

( – орты – единичные вектора, сонаправленные с какой-либо осью)

модуль , направляющие косинусы: и т.д.

Переход от координатного способа к естественному: .

Скорость точки. Вектор ск-сти: – первая производная от радиус-вектора по времени (точка обозначает производную по времени); . Проекции скорости: , , . Модуль скорости:

, направляющие косинусы: и т.д. Если модуль скорости не изменяется с течением времени, то движение называется равномерным. При естественном сп.: – модуль скорости, вектор скорости: , – орт касательной, т.е. скорость всегда направлена по касательной к траектории. Если v>0, то движение происходит в сторону положительного отсчета дуговой координаты и наоборот. Движение в полярной системе координат: r=r(t) – полярный радиус, =(t) – угол. Проекции скорости на радиальное направление , поперечное направление , модуль скорости ; x=rcos, y=rsin.

Ускорение точки. , [м/сек2]. Проекции уск.-я: и т.д. Модуль уск.-я:, направляющ. косинусы: , и т.д.

При задании движения в полярных координатах: проекции ускорения на радиальное направление , поперечное направление , модуль ускорения . При естественным сп. задания движения полное ускорение раскладывают на нормальное и касательное (тангенциальное) ускорения: . Модуль нормального ускорения: ,  – радиус кривизны траектории, нормальное ускорение направлено по нормали к траектории ( к касательной) всегда к центру кривизны, т.е. в сторону вогнутости. Нормальное ускорение характеризует изменение скорости по направлению. Модуль касательного ускорения , направлено по касательной к траектории, либо в сторону скорости, либо в обратную. Касательное ускорение характеризует изменение скорости по величине. При ускоренном движ-ии направление касат. уск. и скорости совпадают, при замедленном – противоположно. ,  . Вектор ускорения лежит в соприкасающейся плоскости  его проекция на бинормаль равна 0 (главная нормаль лежит в соприкасающейся плоскости, т.е. в плоскости плоской кривой, бинормаль –  к главной нормали и касательной). Частные случаи движения точки: 1) Прямолинейное: радиус кривизны =  (бесконечно большой)  аn=0, a=a. 2) Равномерное криволинейное движ-ие: v=const  a=0, a=an. Уск. появляется только за счет изменения направления скорости. Закон движ-ия: s=s0+vt, при s0=0 v=s/t.

3) Равномерное прямолинейное движ-ие: а=a=an=0. Единственное движ-ие, где а=0.

4) Равнопеременное криволинейное движ-ие: a=const, v=v0+at, . При равноуск. движении знаки у a и v одинаковы, при равнозамедленном – разные.

Простейшие движения твердого тела: поступательное и вращение вокруг неподвижной оси. Поступательное движение тела – такое движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается, оставаясь параллельное самой себе. При поступат. движ. все точки тела описывают одинаковые траектории и имеют в каждый момент времени одинаковые по модулю и направлению скорости и ускорения. Вращательное движение тела – такое движение твердого тела, при котором все точки, принадлежащие некоторой прямой, неизменно связанной с телом, остаются неподвижными. Эта прямая называется осью вращения тела. При этом движении все точки тела движутся в плоскостях, перпендикулярных оси вращения, и описывают окружности, центры которых лежат на оси вращения. Урав-ние (закон) вращательного движ.: =f(t) – угол поворота тела в радианах. (1 рад= 180о/=57,3о).

Угловая ск-сть: , [рад/с] – определяет быстроту изменения угла поворота.

Вектор угловой скорости тела, совершающего вращение вокруг неподвижной оси, направлен вдоль оси вращения так, что если смотреть ему навстречу вращение будет против час. стрелке. "n"– число оборотов в мин. [об/мин], 1об=2 рад, . Угловое ускорение тела: , [рад/с2]. Вектор углового ускорения также направлен вдоль оси вращения. При ускоренном движении совпадает по направлению с угловой скоростью и противоположно при замедленном вращении.

Частные случаи вращения тела: 1) Равномерное вращение: =const, =t, =/t,

2) Равнопеременное вращение: =0+t; , здесь начальный угол 0=0.

Скорости и ускорения точек вращающегося тела. – скорость любой точки твердого тела, вращающегося вокруг неподвижной оси, равна векторному произведению вектора угловой скорости тела на радиус–вектор этой точки. Модуль векторного произведения: v=rsin()= (CM), (СМ) – расстояние от точки М до оси вращения. Направлен вектор скорости по касательной к окружности, по которой перемещается точка М, в сторону вращения.

Формулы Эйлера: ,

x,y,z – проекции вектора угловой скорости. Проекция вращательной (окружной) скорости: vx=yz – zy; vy=zx – xz; vz=xy – yx. Если ось вращения совпадает с осью z, то vx= – y; vy=x. Ускорение: . Вращательное ускорение , модуль вращат. уск. авр=rsin, направлено по касательной к траектории точки, т.е. параллельно скорости. Центростремительное (осестремительное) ускорение , ац=2R, направлено по радиусу к оси (центру) вращения. Модуль полного уск.: . Угол, между векторами полного и центростремит-ного ускорений: .

Плоское движение твердого тела.

Плоским (плоскопараллельным) назыв. такое движение, при котором все его точки перемещаются параллельно некоторой неподвижной плоскости. Уравнения плоского движения: xA= f1(t), yA= f2(t),  = f3(t), точка А назыв. полюсом. Плоское движение тв.тела слагается из поступательного движения, при котором все точки тела движутся так же, как полюс (А),и из вращательного движения вокруг этого полюса. Поступательное перемещение зависит от выбора полюса, а величина и направление угла поворота не зависят. Скорости точек тела при плоском движении: ; , vBA= BA, т.е. скорость какой-либо точки В плоской фигуры равна геометрической сумме скорости полюса А и скорости точки В при вращении плоской фигуры вокруг полюса А. Теорема: при плоском движении проекции скоростей двух точек тела на ось, проходящую через эти точки, равны между собой: vAcos = vBcos. Мгновенный центр скоростей – точка плоской фигуры, скорость которой в данный момент равна нулю – Р. Если тело движется непоступательно, т.е. 0, то мгн.цент.ск. всегда существует. При поступательном движении м.ц.с. находится в . – скорость любой точки плоской фигуры имеет модуль, равный произведению угловой скорости фигуры на длину отрезка, соединяющего точку с м.ц.с., и направлена  этому отрезку в сторону вращения фигуры. , скорости точек тела пропорциональны их расстояниям до м.ц.с. , угловая скорость тела равна отношению скорости какой-нибудь точки к ее расстоянию до м.ц.с. Определение положения м.ц.с.: 1) м.ц.с. – точка пересечения перпендикуляров, восстановленных к скоростям точек (напр. в точке В и точке К); 2) если скорости точек А и В параллельны между собой и перпендикулярны АВ, то для определения м.ц.с. должны быть известны модули и направления скоростей (см. vA и vB); 3) если они при этом равны между собой, то м.ц.с. находится в , а угловая скорость =vA/=0; 4) если известно, что скорости двух точек А и В равны, параллельны и не перпендикулярны АВ, то м.ц.с. в , и угловая скорость =vA/=0, если это имеет место только к некоторый момент времени, то имеем мгновенное поступательное движение; 5) если плоская фигура катится без скольжения по неподвижной поверхности, то м.ц.с. плоской фигуры будет в точке соприкасания. Теорема Шаля: плоскую фигуру можно переместить из одного положения в любое другое положение на плоскости одним поворотом этой фигуры вокруг некоторого неподвижного центра. Этот центр на неподвижной плоскости, совпадает с м.ц.с. и называется мгновенным центром вращений (ось вращений). При движении плоской фигуры м.ц.с. непрерывно изменяет свое положение. Геометрическое место м.ц.с., отмеченных на неподвижной плоскости, называется неподвижной центроидой. Геометрическое место м.ц.с., отмеченных на плоскости фигуры, назыв. подвижной центроидой (колесо катится по прямой: неподвижная центроида – прямая, подвижная – окружность). При движении плоской фигуры подвижная центроида катится без скольжения по неподвижной центроиде (теорема Пуансо).

Ускорения точек: ,

– ускорение любой точки (В) фигуры геометрически складывается из ускорения полюса (А) и центростремительного и вращательного ускорений во вращательном движении тела относительно полюса. , , , . Мгновенный центр ускорений – точка (Q) плоской фигуры, ускорение которой в данный момент времени равно нулю. Для его построения из точки А откладываем под углом к ускорению аА отрезок , при этом угол откладывается от ускорения в сторону, направления углового ускорения . Модули ускорений точек плоской фигуры пропорциональны расстояниям от этих точек до мгн.ц. ускорений, а векторы ускорений составляют с отрезками, соединяющими эти точки и м.ц.у. один и тот же угол : . Мгновенный центр скоростей Р и мгновенный центр ускорений Q являются различными точками плоской фигуры.

Сферическое движение твердого тела.

Сф.движ – движение твердого тела, одна из точек которого во все время движения остается неподвижной (напр. движение волчка). Точки тела движутся по сферическим поверхностям. Положение тела определяют при помощи трех углов. Для этого задаются две системы координат: неподвижная Оxyz и подвижная О, связанная с твердым телом. Линия ОJ – линия узлов, задаются углы:  – угол прецессии,  – угол нутации,  – угол собственного вращения — углы Эйлера. Таким образом уравнения сферического движения: =f1(t); =f2(t); =f3(t). Углы отсчитываются от осей против хода час.стр. Теорема Эйлера-Даламбера: всякое перемещение тела, имеющего неподвижную точку, можно заменить одним поворотом вокруг некоторой мгновенной оси вращения, проходящей через эту точку. Скорости всех точек тела, лежащих на мгновенной оси вращения в данный момент времени равны нулю. Вектор угловой скорости (мгновенной угловой скорости) откладывается о неподвижной точки по мгновенной оси в такую сторону, чтобы, смотря навстречу этому вектору, видеть вращение происходящим против час.стр. Вектор угловой скорости со временем изменяется не только по численной величине, но и по направлению. Конец вектора описывает годограф скорости вектора . Угловое ускорение: – скорость конца вектора , совпадает по направлению с касательной к годографу вектора угловой скорости. В случае сферич. движение в отличии от случая вращения вокруг неподвижной оси вектор не совпадает с направлением . Скорости точек при сферич. движ.: – векторное произведение, – радиус-вектор точки, проведенный из неподвижной точки, модуль v=rsin=h, h– расстояние от точки до мгновенной оси вращения. Формулы Эйлера: .

Ускорения: , вращательное ускорение модуль вращат. уск. авр=rsin=h1, h1– расстояние от точки до вектора , направлено –но плоскости, проходящей через точку М и вектор . Осестремительное ускорение , аос=2h, направлено к оси вращения.

Движение свободного тв.тела (общий случай движения). Свободное тв.тело имеет шесть степеней свободы. При рассмотрении движения св.тв.тела, кроме неподвижной системы координат Oxyz, вводится подвижная система координат Ax1y1z1, которая связана с телом в точке А. Тогда движ. св.тв.тела представляет собой сложное движение, которое можно рассматривать как состоящее из поступательного движения вместе с полюсом (А) и сферич. движ. вокруг полюса. Ур-ия движ.св.тв.тела: xA=f1(t); yA=f2(t); zA=f3(t); =f4(t); =f5(t); =f6(t) (углы Эйлера). Первые три ур-ия определяют поступательную часть движ. и зависят от выбора полюса, остальные три определяют сферич. движ. вокруг полюса и от выбора полюса не зависят. Скорость любой точки св.тв.тела = геометрической сумме скорости полюса и скорости этой точки в ее сферическом движении вокруг полюса.

Ускорение точки св.тв.тела = геометрической сумме ускорения полюса, осестремительного ускорения точки и ее вращательного ускорения, определенных относительно мгновенной оси и оси углового ускорения, проходящих через полюс.

, два последних члена дают ускорение точки в ее движении вокруг полюса.

Сложное движение точки (тела) – такое движение, при котором точка (тело) одновременно участвует в нескольких движениях (напр. пассажир, перемещающийся по движущемуся вагону). В этом случае вводится подвижная система координат (Oxyz), которая совершает заданное движение относительно неподвижной (основной) системы координат (O1x1y1z1). Абсолютным движением точки назыв. движение по отношению к неподвижной системе координат. Относительное движение – движение по отношению к подвижной системе коорд. (движение по вагону). Переносное движение – движение подвижной сист. координат относительно неподвижной (движение вагона). Теорема о сложении скоростей: , ; -орты (единичные вектора) подвижной системы координат, орт вращается вокруг мгновенной оси, поэтому скорость его конца и т.д., : ,

; – относительная скорость.

; переносная скорость: , поэтому абсолютная скорость точки = геометрической сумме ее переносной (ve) и относительной (vr) скоростей , модуль: . Теорема о сложении ускорений (теорема Кориолиса):

и т.д. Слагаемые выражения, определяющего ускорения : 1) – ускорение полюса О;

2)

3) – относительное ускорение точки;

4) ,

получаем: .

Первые три слагаемых представляют собой ускорение точки в переносном движении: – ускорение полюса О; – вращательное уск., – осестремительное уск., т.е. . Теорема о сложении ускорений (теорема Кориолиса): , где – ускорение Кориолиса (кориолисово ускорение) – в случае непоступательного переносного движения абсолютное ускорение = геометрической сумме переносного, относительного и кориолисова ускорений. Кориолисово ускорение характеризует: 1) изменение модуля и направления переносной скорости точки из-за ее относительного движения; 2) изменение направления относительной скорости точки из-за вращательного переносного движения. Модуль ускорения Кориолиса: ас= 2|evr|sin(e^vr), направление вектора определяется по правилу векторного произведения, или по правилу Жуковского: проекцию относительной скорости на плоскость, перпендикулярную переносной угловой скорости, надо повернуть на 90о в направлении вращения.

Кориолисово уск. = 0 в трех случаях: 1) e=0, т.е. в случае поступательного переносного движения или в момент обращения угл. скорости в 0; 2) vr=0; 3) sin(e^vr)=0, т.е. (e^vr)=0, когда относительная скорость vr параллельна оси переносного вращения. В случае движения в одной плоскости – угол между vr и вектором e = 90о, sin90o=1, ас=2evr.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.