
- •В 41 одм. Построение доверительного интервала для мат. Ожидания.
- •В42 одм. Постоение доверительного интервала для дисперсии.
- •В43 одм. Статическая проверка гипотез.
- •В45 одм. Проверка гипотезы о равенстве мат. Ожидания
- •В48 опэ. Этапы построения модели.
- •В49 Сглаживание экспериментальных зависимостей методом наименьших квадратов.
- •В50 опэ. Ошибки оценивания параметров стат. Модели
- •51. Опэ. Ошибки при выборе модели
В 41 одм. Построение доверительного интервала для мат. Ожидания.
В качестве примера построим доверительный интервал для мат.ожидания m величины х. При решении этой задачи воспользуемся тем, что величина m* представляет собой сумму n независимый одинаково распределенных СВ xi и согласно центральной опред. Теореме при достаточно больших n ее закон распределения близок к нормальному. На практике уже при количестве опытов 10, 20 закон распределения M* можно приближенно считать нормальным.
Таким
образов имеем право принять гипотезу
о нормальном распределении M*
Параметры этого закона мат.ожидание n
и дисперсия D/n,где
Д-дисперсия СВХ значение которого
известны. Найдем такую величину
,
для которой
Учитывая, что закон распределения нормальный, получим
,
где
-среднее
квадратическое
Ф-значение функции нормированного распределения
Из последних 2х уравнений находим значение :
Где
arg
Ф(
)
-такое значение аргумента при котором
нормальная функция распределения равна
.
Величина
-квантильный множитель, определяет для
нормального закона число средних
квадратических отклонений которые
нужно отложить вправо и влево от центра
рассеивания для того, чтобы вероятность
попадания в полученный интервал была
равна
.
Используя
значение
,
доверительный интервал для мат.ожидания
запишем:
В42 одм. Постоение доверительного интервала для дисперсии.
Пусть произведению n независимых опытов над случайной величиной Х с неизвестными параметрами m и D для дисперсии получена несмещенная оценка.
Из формулы (1) видно что оценка Д* представляет сумму n СВ вида:
Эти величины и является независимыми. Т.к. в любую из них входит оценка m* зависящая от всех остальных.
Однако при увеличении n закон распределения суммы приближается к нормальному и при уже может считаться нормальным.
При
построении довер. Интервала примем
гипотезу о нормальном законе распределения
Д*, так
несмещенная, то матожидание M[
]=Дx
Дисперсию
оценки можно опред. по формуле :
Вместо
4 центр. момента в этом выражении можно
воспользоваться его оценкой
.
Однако
точность такой оценки очень невысокая.
Для норм. з-на распр-я случ. величины Х
выражается через дисперсию.
Чтобы
воспользоваться формулой для оценки
Дх*
в
нее нужно поставить хотя бы приближенные
значения параметра Дх.
Можно воспользоваться например оценкой
Д* тогда для норм. з-на получим
В этом случае доверит.интервал для дисперсии СВ Х имеет вид
В43 одм. Статическая проверка гипотез.
Под гипотезой Н будет понимать некоторое предположение об свойствах случайной величины Х
Путем статической проверки устанавливают на сколько данные полученные из n опытов согласуются с высказанной гипотезой,т.е. можно ли на их основаниях принять или отвергнуть гипотезу. Абсолютно достоверное решение относительно рассматриваемой гипотезы получить нельзя. При проверки гипотезы могут быть допущены ошибки 1 и 2 рода.
Ошибка
1 рода состоит в том, что будет отвергнута
правильная гипотеза. Вероятность такой
ошибки назыв. Уравнением значимости и
часто обозначается
.При проверке гипотезы величина
должна быть выбрана экспериментально.
Ошибка 2 рода состоит в том, что будет принята непрвильная гипотеза. Вероятность такой ошибки часто выражают через .
Для проверки гипотез используют случайную величину полученную по опред. Правилам и называемую статическим критерием. Совокупность значения критерия при котором проверяемую гипотезу отвергают назыв. Критической областью.
Процедура проверки состоит в след.:
1)выбирается критерий Z и рассчитывается его значение исходя из опытных данных
2)устанавливается критическая область К в которую в случае справедливости гипотезы Н значение Z может попасть только с малой вероятностью
3)Если значение Z попало в область К, гипотеза Н отклоняется, в противном случае считают что оснований для отклонения нет.
Критическая область может быть:
-односторонней-когда
проверяется условие
при
или
при
-двусторонней-когда
проверяются условия
при
Критические точки Zкр ищут исходя из соотн-й:
-для односторонней крит. Обл-ти
-для двусторонней крит. Обл-ти
В44 ОДМ.ПРОВЕРКА ГИПОТЕЗЫ О РАВЕНСТВЕ ДИСПЕРСИЙ НОРМАЛЬНЫХ СОВОКУПНОСТЕЙ.
По
независимым малым выборкам из нормальных
генеральных совокупностей объемами n1
и n2
(n1<30
и n2<30)
найдены выборочные средние
и
и выборочные дисперсии D*1
и D*2.
Генеральные дисперсии неизвестны, но
принята гипотеза об их равенстве. Для
того чтобы при заданном уровне значимости
проверить гипотезу Н0:
М(x1)=М(x2)
о равенстве математических ожиданий
(генеральных средних) нормальных
совокупностей в случае малых независимых
выборок при конкурирующей гипотезе Н1:
М(x1)
М(x2),
необходимо вычислить значение критерия
по формуле:
и по таблице распределения Стьюдента, исходя из заданного уровня значимости и числа степеней свободы k=n1+n2-2, найти критическую точку zкр(, k). Если |z|< zкр(, k) нет оснований отвергнуть гипотезу Н0.